Isothermal Refining by Organic Solvent Nanofiltration - ISOREF

有机溶剂纳滤等温精炼 - ISOREF

基本信息

  • 批准号:
    EP/M013693/1
  • 负责人:
  • 金额:
    $ 37.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Crude oil refining is (after chemicals production) the second most energy intensive industry in advanced economies. For example, refining consumes 6% of the total energy used in the US. Current refinery technology is based on distillation for separation of the crude oil into fractions with varying molecular weights, followed by further reactions on some of these fractions (reforming, hydrotreating, cracking etc), which must then be further distilled. Distillation involves converting a large fraction of a liquid feed into a gas by boiling, so that compounds present in the feed can be separated by means of differences in their boiling points. In refining, distillation typically account for more than half of all the energy consumed, since the phase change on boiling requires significant energy input.One way of avoiding this large energy consumption would be to carry out fractionation in the liquid phase via a membrane. If a mixture of hydrocarbons is pressed by pressure against a membrane, and the membrane is permeable to only some of the materials, then we can separate the molecules that pass through the membrane from those that do not. This avoids the large energy injections of evaporation or distillation. Theoretical calculations show that the energy required for concentrating a mixture by membrane separation is less than 5% of the energy associated with distillation. Not surprisingly, people have been interested in using membranes to separate and concentrate liquids for some time. The majority of membrane separations to date are water based. A major success is in the area of desalination, where membranes are used to separate fresh water out of seawater. Membranes are not generally used for molecular separations in organic systems, because until recently there were few membranes stable in organic liquids. This has changed recently - research at Imperial College has developed membranes that are stable in most organic systems. These have been commercialised through an Imperial spin out company, Membrane Extraction Technology (MET) which was acquired by Evonik Industries on 1 March 2010. Evonik MET has made a substantial investment in a large scale membrane manufacturing facility in West London, delivering on the UK Government's vision for Manufacturing the Future.In many cases the required separation cannot be achieved in a single pass through a membrane, because the membrane does not discriminate highly enough between the different molecules that are present. In these cases, to achieve the required separation, the liquid can be processed through membranes multiple times. This arrangement of membranes is known as a membrane cascade.Given the advances that have been made in the development of membranes for organic systems and their application in membrane cascades, this project will research the use of membranes for refining crude oil. Membranes do not require boiling and condensation, and so can be operated at a single temperature. This will reduce the needs for heating and cooling, and so the associated heat losses. Thus we expect that isothermal refining with organic solvent nanofiltration membranes will significantly reduce the energy requirements for manufacturing fuels and lube products from crude oil.The project will work with a synthetic clean crude, made up to simulate the key hydrocarbon components of a real material. Experimental and simulation work will be used to design a membrane cascade to separate the synthetic crude; this cascade design will then be assembled and operated to prove the concept. Further simulations will then estimate what energy savings would result if isothermal refining were employed with a real crude. The project will work closely with partner Shell Gobal Solutions, who are a major company in oil refining and refinery technology.
原油精炼是发达经济体第二大能源密集型产业(仅次于化学品生产)。例如,炼油消耗了美国总能源的6%。目前的炼油技术是基于蒸馏将原油分离成具有不同分子量的馏分,然后对这些馏分中的一些进行进一步反应(重整、加氢处理、裂化等),然后必须进一步蒸馏。蒸馏涉及通过沸腾将大部分液体进料转化为气体,使得进料中存在的化合物可以通过其沸点的差异来分离。在精炼过程中,蒸馏通常占所有能耗的一半以上,因为沸腾时的相变需要大量的能量输入。避免这种巨大能耗的一种方法是通过膜在液相中进行分馏。如果碳氢化合物的混合物被压力压在膜上,而膜只对某些材料是可渗透的,那么我们就可以将通过膜的分子与不通过膜的分子分离开来。这避免了蒸发或蒸馏的大量能量注入。理论计算表明,通过膜分离浓缩混合物所需的能量小于与蒸馏相关的能量的5%。毫不奇怪,人们对使用膜分离和浓缩液体感兴趣已经有一段时间了。迄今为止,大多数膜分离是基于水的。一个主要的成功是在海水淡化领域,膜被用来从海水中分离淡水。膜通常不用于有机体系中的分子分离,因为直到最近才有几种膜在有机液体中稳定。最近,这种情况发生了变化-帝国理工学院的研究已经开发出在大多数有机系统中稳定的膜。这些技术已通过帝国分拆公司膜提取技术(MET)实现商业化,该公司于2010年3月1日被赢创工业收购。赢创MET在西伦敦投资兴建了一座大型膜制造工厂,实现了英国政府“制造未来”的愿景。在许多情况下,所需的分离无法通过膜的一次通过来实现,因为膜不能充分区分存在的不同分子。在这些情况下,为了实现所需的分离,液体可以通过膜多次处理。这种膜的排列被称为膜级联。鉴于有机体系膜的开发及其在膜级联中的应用所取得的进展,本项目将研究膜在原油精炼中的应用。膜不需要沸腾和冷凝,因此可以在单一温度下操作。这将减少对加热和冷却的需求,从而减少相关的热损失。因此,我们预计,采用有机溶剂纳滤膜的等温精炼将显著降低从原油中制造燃料和润滑油产品的能源需求。该项目将使用合成清洁原油,由模拟真实的材料的关键碳氢化合物成分组成。实验和模拟工作将被用来设计一个膜级联分离合成原油,这个级联设计将组装和运行,以证明这一概念。进一步的模拟然后将估计如果等温精炼被用于真实的原油将导致什么样的能量节省。该项目将与合作伙伴壳牌全球解决方案公司密切合作,壳牌全球解决方案公司是炼油和炼油技术的主要公司。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous Consecutive Reactions with Inter-Reaction Solvent Exchange by Membrane Separation.
  • DOI:
    10.1002/anie.201607795
  • 发表时间:
    2016-10-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Peeva, Ludmila;Burgal, Joao Da Silva;Heckenast, Zsofia;Brazy, Florine;Cazenave, Florian;Livingston, Andrew
  • 通讯作者:
    Livingston, Andrew
Low energy intensity production of fuel-grade bio-butanol enabled by membrane-based extraction
  • DOI:
    10.1039/d0ee02927k
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Kim, Ji Hoon;Cook, Marcus;Livingston, Andrew G.
  • 通讯作者:
    Livingston, Andrew G.
Towards improved membrane production: using low-toxicity solvents for the preparation of PEEK nanofiltration membranes
  • DOI:
    10.1039/c5gc02546j
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Burgal, Joao da Silva;Peeva, Ludmila;Livingston, Andrew
  • 通讯作者:
    Livingston, Andrew
Negligible ageing in poly(ether-ether-ketone) membranes widens application range for solvent processing
  • DOI:
    10.1016/j.memsci.2016.10.015
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Burgal, Joao da Silva;Peeva, Ludmila;Livingston, Andrew
  • 通讯作者:
    Livingston, Andrew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Livingston其他文献

The 15th annual meeting of the pavlovian society
  • DOI:
    10.1007/bf03000290
  • 发表时间:
    1976-04-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Roscoe A. Dykman;R. D. Ray;F. J. McGuigan;W. N. Schoenfeld;A. M. Washton;J. C. McMillan;R. M. Kadden;J. C. Lamb;J. P. Isaacs;J. E. O. Newton;J. L. Chapin;R. Rogozea;V. Florea-Ciocoiu;A. Kreindler;Nelson Hendler;Andrew Livingston;O. J. Andy;L. Guirintano;S. Guirintano;T. McDonald;P. Simpson;David C. Randall;Joseph V. Brady;Kris H. Martin;A. M. Prestrude;William P. Paré;D. A. Brown;J. F. Greenspan;T. A. Ban;H. E. Lehmann;Mikhail M. Khananashvili
  • 通讯作者:
    Mikhail M. Khananashvili
Inability to condition a peripheral activating drug
SABR for Sarcoma Lung Metastases: Indications for Treatment and Guidance for Patient Selection
肉瘤肺转移的 SABR:治疗指征和患者选择指南
  • DOI:
    10.1016/j.ijrobp.2023.10.017
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Ahsan S. Farooqi;Alison K. Yoder;Heather Y. Lin;Dario Pasalic;Jeremy Erasmus;Sonia Betancourt;Cort Wernz;Devarati Mitra;Maria A. Zarzour;Neeta Somaiah;Anthony Conley;Ravin Ratan;Andrew Livingston;Dejka M. Araujo;Christina Roland;Christopher Scally;Emily Keung;Saumil N. Gandhi;B. Ashleigh Guadagnolo;Quynh-Nhu Nguyen;Andrew J. Bishop
  • 通讯作者:
    Andrew J. Bishop
An attempt to condition components of urine formation in dogs
Papers presented at the Tenth Annual Meeting of the Pavlovian Society of North AmericaOctober 31-November 1,1969 Princeton, N. J.
  • DOI:
    10.1007/bf03000251
  • 发表时间:
    1970-07-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    M. B. Sterman;J. J. Lynch;M. T. Orne;D. Paskewitz;J. Costello;N. Nicolov;O. Diankov;M. Popova;E. Tsvetanska;Robert G. Grenell;J. J. Izquierdo;V. H. Mark;Joseph Germana;N. Zill;William P. Paré;Joseph E. O. Newton;George C. Offutt;Walter Ehrlich;Joseph E. D. Newton;Julij Tosef;J. Perez-Cruet;Chester R. Wilpizeski;John F. Lontz;Andrew Livingston;Joseph W. Cullen;Samuel A. Corson;Herman R. Weed;Elizabeth O. Corson;O. D. Murphree;Paul N. Morgan;Ruth Jarman;J. Antal;T. A. Ban;J. V. Ananth;H. E. Lehmann;A. Ulric Moore;Richard H. Barnes;Wilson G. Pond
  • 通讯作者:
    Wilson G. Pond

Andrew Livingston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Livingston', 18)}}的其他基金

Nanostar Sieving for Oligonucleotides Manufacture (NanoSieveOligo)
用于寡核苷酸生产的 Nanostar 筛分 (NanoSieveOligo)
  • 批准号:
    EP/T00827X/2
  • 财政年份:
    2021
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
System Builders - Device Assembly from Nanoporous Materials Developed from Current Platform Grant (EP/J014974/1)
系统构建商 - 利用当前平台资助开发的纳米多孔材料进行设备组装 (EP/J014974/1)
  • 批准号:
    EP/R029180/2
  • 财政年份:
    2021
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
Nanostar Sieving for Oligonucleotides Manufacture (NanoSieveOligo)
用于寡核苷酸生产的 Nanostar 筛分 (NanoSieveOligo)
  • 批准号:
    EP/T00827X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
System Builders - Device Assembly from Nanoporous Materials Developed from Current Platform Grant (EP/J014974/1)
系统构建商 - 利用当前平台资助开发的纳米多孔材料进行设备组装 (EP/J014974/1)
  • 批准号:
    EP/R029180/1
  • 财政年份:
    2018
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
CBET-EPSRC A Game-Changing Approach for Tunable Membrane Development: Novel COF Active Layers Supported by Solvent Resistant Materials
CBET-EPSRC 可调膜开发的颠覆性方法:耐溶剂材料支持的新型 COF 活性层
  • 批准号:
    EP/R018847/1
  • 财政年份:
    2017
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
Rosalind Franklin Institute : Establishment Phase
罗莎琳德·富兰克林研究所:建立阶段
  • 批准号:
    EP/R029164/1
  • 财政年份:
    2017
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
Iterative Synthesis with Organic Solvent Nanofiltration for Precision Manufacture of High Value Sequence-Controlled Polymers (ItSyN)
有机溶剂纳滤迭代合成用于精密制造高价值序列控制聚合物 (ItSyN)
  • 批准号:
    EP/M003949/1
  • 财政年份:
    2015
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
Queen Mary University of London - Equipment Account
伦敦玛丽女王大学 - 设备账户
  • 批准号:
    EP/M507246/1
  • 财政年份:
    2014
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
Molecular Builders: Constructing Nanoporous Materials
分子构建剂:构建纳米多孔材料
  • 批准号:
    EP/J014974/1
  • 财政年份:
    2012
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
ELSEP - Elucidate and Separate - Palladium Catalysts in C-C and C-N Coupling Reactions
ELSEP - 阐明和分离 - C-C 和 C-N 偶联反应中的钯催化剂
  • 批准号:
    EP/G070172/1
  • 财政年份:
    2009
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Molecular Electrocatalysts and Reactive Separations for Wastewater Nitrogen Refining
职业:废水氮精炼的分子电催化剂和反应分离
  • 批准号:
    2339308
  • 财政年份:
    2024
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Electromagnetic-ablative PGM Refining for In-situ Asteroid Mining
SBIR 第一阶段:用于小行星原位采矿的电磁烧蚀铂族金属精炼
  • 批准号:
    2327078
  • 财政年份:
    2024
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Standard Grant
Collaborative Research: The Individual Differences Corpus: A resource for testing and refining hypotheses about individual differences in speech production
协作研究:个体差异语料库:用于测试和完善有关言语产生个体差异的假设的资源
  • 批准号:
    2234096
  • 财政年份:
    2023
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Standard Grant
Mitigating the health risks from periodontal disease: refining and focusing the research questions
减轻牙周病的健康风险:完善和集中研究问题
  • 批准号:
    480806
  • 财政年份:
    2023
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Miscellaneous Programs
Refining oxytocin therapy for pain: context is key
完善催产素治疗疼痛的方法:背景是关键
  • 批准号:
    10595113
  • 财政年份:
    2023
  • 资助金额:
    $ 37.55万
  • 项目类别:
Screening and Brief Intervention for Prescription Stimulant Misuse and Diversion: Refining and Piloting a Curriculum for College Health Providers
针对处方兴奋剂滥用和转移的筛查和简短干预:为大学医疗服务提供者完善和试点课程
  • 批准号:
    10731122
  • 财政年份:
    2023
  • 资助金额:
    $ 37.55万
  • 项目类别:
Collaborative Research: Applying and Refining a Model for Dynamic, Discussion-Based Professional Development for Middle School Teachers about Fractions, Ratios and Proportions
合作研究:应用和完善中学教师关于分数、比率和比例的动态、基于讨论的专业发展模型
  • 批准号:
    2331772
  • 财政年份:
    2023
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Continuing Grant
Refining and embedding the Intersectional "MAIHDA" approach to intersectionality in quantitative social science research.
在定量社会科学研究中完善和嵌入交叉“MAIHDA”方法。
  • 批准号:
    ES/X011313/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.55万
  • 项目类别:
    Research Grant
Battery Materials R&D Centre of Excellence, UK: Validating the lithium refining process flowsheet and designing a facility for rapid scale up
电池材料研究
  • 批准号:
    10077163
  • 财政年份:
    2023
  • 资助金额:
    $ 37.55万
  • 项目类别:
    BEIS-Funded Programmes
Refining neurophysiological biomarkers of epilepsy using deep learning to guide pediatric epilepsy surgery
利用深度学习完善癫痫的神经生理学生物标志物来指导小儿癫痫手术
  • 批准号:
    10664790
  • 财政年份:
    2023
  • 资助金额:
    $ 37.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了