Next Generation Fibre-Reinforced Composites: a Full Scale Redesign for Compression

下一代纤维增强复合材料:全面重新设计压缩

基本信息

  • 批准号:
    EP/T011653/1
  • 负责人:
  • 金额:
    $ 790.67万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

High performance fibre-reinforced polymer composites are the current state-of-the-art for lightweight structures and their use is rising exponentially in a wide range of applications from aerospace to sporting goods. They offer outstanding mechanical properties: high strength and stiffness, low weight, and low susceptibility to fatigue and corrosion. The use of high strength, high stiffness materials in fibre form mitigates the tendency for premature brittle failure, enables components to be formed at low or moderate temperatures, and enables anisotropic designs to target the primary load-carrying demands. Fibres are particularly efficient in uniaxial tension but, under compression, composites suffer a range of failures typically associated with fibre micro-buckling or kinking, linked to matrix or interfacial issues; these mechanisms couple in a complicated way at a variety of physical lengthscales. Often, these types of failure determine the practical usage of composites and set design limits well below the expected intrinsic performance of the constituent fibres. On the other hand, new constituents and processes are becoming available that enable the directed assembly of composite structures, controlled across a much wider range of lengthscales than previously possible. In principle, then, composite materials should be redesigned to take advantage of these opportunities to supress or redirect the failure process in compression. Natural materials, such as wood and bone, are fully hierarchical, with precise structural features resolved at every possible magnification. Artificial composites lack this dexterity but can exploit intrinsically superior constituents. The increasing ability to visualise, calculate, and control structures, including with quantitative precision, will allow a new generation of composite materials to be developed. The ambition is to realise the full intrinsic potential of the fibres by designing such hierarchical systems for compression, from first principles, exploiting the latest developments in materials, processing, characterisation, and modelling of mechanistic processes.This programme focusses on the challenge of improving the absolute performance of composites in compression, both to address practical limitations of current materials, and as a demonstration of the value of quantitative hierarchical materials design. Tools and materials developed during this programme will be useful in a range of other contexts. The work will develop and embed structure at every lengthscale from the molecules of the matrix, to the lay-up of final components, using new constituents and new architectures, designed with a new analytical framework. The programme will benefit from a highly creative and interdisciplinary approach amongst the core project term, amplified by contributions from leading international advisors and collaborators. An extensive group of industrial partners will contribute to the project, and help to develop the outputs, building on concept demonstrators designed during the programme. The scientific and technical results will be widely disseminated nationally and internationally, helping to ensure UK leadership in this key field.
高性能纤维增强聚合物复合材料是当前轻质结构的最新技术,其在从航空航天到体育用品的广泛应用中的使用呈指数级增长。它们具有出色的机械性能:高强度和刚度、低重量以及低疲劳和腐蚀敏感性。采用高强度、高刚度的纤维材料可减少过早脆性破坏的趋势,使部件能够在低温或中温下成型,并使各向异性设计能够满足主要的承载要求。纤维在单轴拉伸中特别有效,但是在压缩下,复合材料遭受一系列通常与纤维微屈曲或扭结相关的故障,与基质或界面问题相关;这些机制以复杂的方式在各种物理长度尺度上耦合。通常,这些类型的故障决定了复合材料的实际用途,并将设计限制设置为远低于组成纤维的预期固有性能。另一方面,新的成分和工艺正在变得可用,使得复合结构的定向组装成为可能,其控制范围比以前可能的范围更广。因此,原则上,复合材料应该重新设计,以利用这些机会来抑制或重新定向压缩中的失效过程。天然材料,如木材和骨骼,是完全分层的,在每一个可能的放大倍率下都能分辨出精确的结构特征。人造复合材料缺乏这种灵活性,但可以利用内在的上级成分。可视化、计算和控制结构的能力不断提高,包括定量精度,将使新一代复合材料得以开发。目标是通过设计这种分层系统来实现纤维的全部内在潜力,从第一原理出发,利用材料,加工,表征和机械过程建模的最新发展。该计划侧重于提高复合材料在压缩中的绝对性能的挑战,既要解决当前材料的实际局限性,并作为量化层次材料设计价值的论证。在该方案期间开发的工具和材料将在一系列其他情况下有用。这项工作将开发和嵌入结构在每个长度尺度从矩阵的分子,到最终组件的铺设,使用新的成分和新的架构,设计了一个新的分析框架。该计划将受益于核心项目术语中高度创造性和跨学科的方法,并通过领先的国际顾问和合作者的贡献进行放大。一个广泛的工业合作伙伴团体将为该项目作出贡献,并在方案期间设计的概念示范的基础上帮助开发产出。科学和技术成果将在国内和国际上广泛传播,有助于确保联合王国在这一关键领域的领导地位。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel bio-inspired microstructure for improved compressive performance of multidirectional CFRP laminates
一种新型仿生微结构,可提高多向 CFRP 层压板的压缩性能
  • DOI:
    10.1016/j.compositesb.2023.110867
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Garulli T
  • 通讯作者:
    Garulli T
Silica aerogel infused hierarchical glass fiber polymer composites
  • DOI:
    10.1016/j.coco.2023.101531
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    8
  • 作者:
    D. B. Anthony;S. Nguyen;H. Qian;S. Xu;Charles M.D. Shaw;E. Greenhalgh;A. Bismarck;M. Shaffer
  • 通讯作者:
    D. B. Anthony;S. Nguyen;H. Qian;S. Xu;Charles M.D. Shaw;E. Greenhalgh;A. Bismarck;M. Shaffer
A novel bio-inspired microstructure for progressive compressive failure in multidirectional composite laminates
一种新型仿生微结构,可用于多向复合材料层压板的渐进压缩破坏
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garulli T
  • 通讯作者:
    Garulli T
Carbon Nanotube-grafted Carbon Fiber Production: A Scaling Challenge
碳纳米管接枝碳纤维生产:规模化挑战
Hierarchical solutions to compressive problems in fibre-reinforced composites
纤维增强复合材料压缩问题的分层解决方案
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anthony D
  • 通讯作者:
    Anthony D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Milo Shaffer其他文献

Milo Shaffer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Milo Shaffer', 18)}}的其他基金

Manufacturing High Performance Wearable De Novo Polypeptide Fabrics
制造高性能可穿戴从头多肽织物
  • 批准号:
    EP/V052020/1
  • 财政年份:
    2021
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Research Grant
Electrochemical processing of discrete nanoparticle ions
离散纳米粒子离子的电化学处理
  • 批准号:
    EP/L001896/1
  • 财政年份:
    2013
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Research Grant
Large-scale solvent-free functionalisation of carbon nanotubes
碳纳米管的大规模无溶剂官能化
  • 批准号:
    EP/H007598/1
  • 财政年份:
    2009
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Research Grant
Directed Assembly of High Aspect Ratio Nanoparticles for Hierarchical Materials
用于分层材料的高纵横比纳米颗粒的定向组装
  • 批准号:
    EP/G007314/1
  • 财政年份:
    2008
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Fellowship

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Next Generation of Automotive Crossmember by cOMlding Epoxy SMC with Fibre Steered Preforms (GACOM)
通过将环氧 SMC 与纤维转向预成型件 (GACOM) 混合来制造下一代汽车横梁
  • 批准号:
    10081994
  • 财政年份:
    2023
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Collaborative R&D
Carbon fibre thermoplastics as next-generation carbon fibre composites
碳纤维热塑性塑料作为下一代碳纤维复合材料
  • 批准号:
    DP230103008
  • 财政年份:
    2023
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Discovery Projects
Advancing Quantum Communications using Next-Generation Optical Fibre
使用下一代光纤推进量子通信
  • 批准号:
    2742638
  • 财政年份:
    2022
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Studentship
Routing shapes of light for the next generation of fibre optic networks
下一代光纤网络的光路由形状
  • 批准号:
    FT200100590
  • 财政年份:
    2021
  • 资助金额:
    $ 790.67万
  • 项目类别:
    ARC Future Fellowships
Next generation lasers for short-reach optical fibre communication
用于短距离光纤通信的下一代激光器
  • 批准号:
    LP170100720
  • 财政年份:
    2019
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Linkage Projects
Novel Non-linear Optical-Fibre Sources for Time-resolved Molecular Dynamics: Towards the Next Generation of Ultrafast Spectroscopy
用于时间分辨分子动力学的新型非线性光纤源:迈向下一代超快光谱学
  • 批准号:
    EP/R030448/1
  • 财政年份:
    2018
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Research Grant
Broadband Wireless over Fibre for Next Generation Communications
用于下一代通信的宽带光纤无线
  • 批准号:
    2158890
  • 财政年份:
    2018
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Studentship
Next generation fibre laser pumped mid-infrared light sources
下一代光纤激光器泵浦中红外光源
  • 批准号:
    2123633
  • 财政年份:
    2018
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Studentship
High Performance Discontinuous Fibre Composites - a sustainable route to the next generation of composites
高性能不连续纤维复合材料——下一代复合材料的可持续发展之路
  • 批准号:
    EP/P027393/1
  • 财政年份:
    2017
  • 资助金额:
    $ 790.67万
  • 项目类别:
    Research Grant
Laser Processing of Next Generation Optical Fibre Interconnects
下一代光纤互连的激光加工
  • 批准号:
    720764
  • 财政年份:
    2016
  • 资助金额:
    $ 790.67万
  • 项目类别:
    GRD Development of Prototype
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了