Novel Non-linear Optical-Fibre Sources for Time-resolved Molecular Dynamics: Towards the Next Generation of Ultrafast Spectroscopy

用于时间分辨分子动力学的新型非线性光纤源:迈向下一代超快光谱学

基本信息

  • 批准号:
    EP/R030448/1
  • 负责人:
  • 金额:
    $ 75.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Developing detailed understanding of molecular interactions with light is of great importance. This is highly relevant, for example, to the fundamental biological processes of vision and photosynthesis, and also in photoresistive pathways (as seen in systems such as DNA and the melanin pigments) that protect living organisms from damage by ultraviolet (UV) light. Understanding light-molecule interactions is also of critical relevance for many other species, including photostabilizers, photochromic polymers, light harvesting complexes, sunscreens, photodynamic therapy drugs and molecules relevant to atmospheric/interstellar photochemistry. Advancing experimental techniques to improve the study of such systems is therefore imperative. In particular, learning more about the fundamental mechanisms that redistribute excess absorbed energy in molecules - and ultimately how to better utilize them - is of profound interest.The use of "ultrafast" femtosecond laser pulses with temporal durations comparable to the timescales of molecular motion is a powerful method for studying light-matter interactions. Excess energy redistribution is followed in real time using "pump-probe" techniques: pump absorption effectively starts a dynamical "clock" on the overall process and the system is then interrogated at a series of precisely controlled delay times by the probe, mapping out the relaxation pathways. Time-resolved photoelectron imaging (TRPEI) is an extremely powerful variant of this general approach, yielding highly differential energy- and angle-resolved information offering deep insight into the underlying photophysics. A key requirement for TRPEI is the use of tuneable UV femtosecond pulses for both pump (excitation) and probe (ionization). Operating in this spectral region is, however, extremely inefficient and this places restrictions on the feasibility and scope of many studies. A rapidly emerging new technology for providing greatly improved (100-1000x) gains in UV generation efficiency makes use of hollow-core photonic crystal fibres (HC-PCFs). These also offer access to short-wavelength spectral regions (<200 nm) that are not easily realized via more conventional means. The key aim of this project is to harness the advantages afforded by HC-PCFs and undertake detailed, systematic studies of excess energy redistribution in model chromophore motifs (the light-absorbing centres in larger biomolecules). The selected motifs have all been implicated in providing UV photo-protective function and the highly-differential nature of TRPEI, supported by state-of-the-art quantum chemistry calculations, will yield much new insight into the fundamental mechanisms mediating such processes. Our study will also reveal principles relating more generally to the interplay between molecular structure, dynamics, and photochemical function that are broadly applicable to a far wider range of species - including those that may be exploited commercially.The project brings together four researchers with complementary skills in ultrafast lasers, non-linear optics, molecular dynamics and cutting-edge computation. HC-PCF sources will be integrated into a TRPEI set-up, creating a unique state-of-the-art instrument. Detailed evaluation the device will include development of a novel single-wavelength pump-probe (SWPP) scheme that provides an expanded "view" along relaxation pathways and yields enhanced dynamical information. This opens up exciting new avenues of investigation and we will take advantage of this in using SWPP-TRPEI to perform studies of excess energy redistribution in three distinct molecular motifs providing starting models for chromophores found in nature (as detailed in the Objectives section). Our work represents a major step forward in realizing a next generation of low-cost table-top light sources for ultrafast spectroscopy and we anticipate that the dissemination of our findings will have lasting impact on this major research field.
发展对分子与光的相互作用的详细了解是非常重要的。例如,这与视觉和光合作用的基本生物过程以及保护生物体免受紫外线(UV)损害的光阻途径(如DNA和黑色素等系统中所见)高度相关。了解光分子相互作用对许多其他物种也至关重要,包括光稳定剂、光致变色聚合物、捕光复合物、防晒剂、光动力治疗药物和与大气/星际光化学相关的分子。因此,推进实验技术,以改善这种系统的研究是势在必行的。特别是,更多地了解重新分配分子中多余吸收能量的基本机制--以及最终如何更好地利用它们--具有深远的意义。使用“超快”飞秒激光脉冲,其持续时间与分子运动的时间尺度相当,是研究光与物质相互作用的强大方法。使用“泵浦-探测”技术在真实的时间中跟踪多余的能量重新分配:泵浦吸收有效地启动整个过程的动态“时钟”,然后通过探测器在一系列精确控制的延迟时间处询问系统,绘制出弛豫路径。时间分辨光电子成像(TRPEI)是这种一般方法的一个非常强大的变体,产生高度微分能量和角度分辨的信息,提供深入了解潜在的电子物理学。TRPEI的一个关键要求是使用可调的紫外飞秒脉冲进行泵浦(激发)和探测(电离)。然而,在这一光谱区域的操作效率极低,这限制了许多研究的可行性和范围。一种迅速出现的新技术,用于提供大大提高的(100- 1000倍)紫外线产生效率的增益,利用空心光子晶体光纤(HC-PCF)。这些还提供了对短波长光谱区域(<200 nm)的访问,这是通过更传统的手段不容易实现的。该项目的主要目的是利用HC-PCF提供的优势,并对模型发色团基序(较大生物分子中的光吸收中心)中的过量能量再分配进行详细,系统的研究。所选择的基序都涉及提供UV光保护功能,并且TRPEI的高度差异性,由最先进的量子化学计算支持,将对介导这些过程的基本机制产生许多新的见解。我们的研究还将揭示分子结构、动力学和光化学功能之间相互作用的一般原理,这些原理广泛适用于更广泛的物种,包括那些可能被商业开发的物种。该项目汇集了四名在超快激光、非线性光学、分子动力学和尖端计算方面具有互补技能的研究人员。HC-PCF源将被集成到TRPEI装置中,创建一个独特的最先进的仪器。详细评估该设备将包括一个新的单波长泵浦探测(SWPP)计划,提供了一个扩展的“视图”沿着弛豫路径,并产生增强的动态信息的发展。这开辟了令人兴奋的新的研究途径,我们将利用这一点,使用SWPP-TRPEI在三个不同的分子基序中进行过量能量再分配的研究,为自然界中发现的发色团提供起始模型(如目标部分所述)。我们的工作代表了实现下一代低成本桌面光源用于超快光谱的重要一步,我们预计我们的研究结果的传播将对这一主要研究领域产生持久的影响。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast Molecular Spectroscopy Using a Hollow-Core Photonic Crystal Fiber Light Source.
  • DOI:
    10.1021/acs.jpclett.8b03777
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Kotsina;F. Belli;Shou-fei Gao;Ying‐ying Wang;Pu Wang;J. Travers;D. Townsend
  • 通讯作者:
    N. Kotsina;F. Belli;Shou-fei Gao;Ying‐ying Wang;Pu Wang;J. Travers;D. Townsend
Short-wavelength probes in time-resolved photoelectron spectroscopy: an extended view of the excited state dynamics in acetylacetone
  • DOI:
    10.1039/d0cp00068j
  • 发表时间:
    2020-02-28
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kotsina, Nikoleta;Candelaresi, Marco;Townsend, Dave
  • 通讯作者:
    Townsend, Dave
Vacuum ultraviolet excited state dynamics of small amides.
小酰胺的真空紫外激发态动力学。
Ultraviolet Excitation Dynamics of Nitrobenzenes.
硝基苯的紫外激发动力学。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dave Townsend其他文献

Fourier-Hankel-Abel Nyquist-limited tomography: A spherical harmonic basis function approach to tomographic velocity-map image reconstruction.
Fourier-Hankel-Abel Nyquist-limited tomography:一种用于层析速度图图像重建的球谐基函数方法。
  • DOI:
    10.1063/5.0206415
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Sparling;D. Rajak;Valérie Blanchet;Y. Mairesse;Dave Townsend
  • 通讯作者:
    Dave Townsend
Excited state dynamics of azanaphthalenes reveal opportunities for the rational design of photoactive molecules
氮杂萘的激发态动力学揭示了光活性分子合理设计的机会
  • DOI:
    10.1038/s42004-024-01403-z
  • 发表时间:
    2025-01-09
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Malcolm Garrow;Lauren Bertram;Abi Winter;Andrew W. Prentice;Stuart W. Crane;Paul D. Lane;Stuart J. Greaves;Martin J. Paterson;Adam Kirrander;Dave Townsend
  • 通讯作者:
    Dave Townsend

Dave Townsend的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dave Townsend', 18)}}的其他基金

Fs-VUV Generation: Mapping the Reaction Co-ordinate in Photochemical Dynamics
Fs-VUV 生成:绘制光化学动力学中的反应坐标
  • 批准号:
    EP/K021052/1
  • 财政年份:
    2013
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Research Grant
The Role of Substituent Functionality in the Photophysics of Model Biological Systems
取代基官能团在模型生物系统光物理学中的作用
  • 批准号:
    EP/G041717/1
  • 财政年份:
    2009
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Research Grant

相似国自然基金

Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
  • 批准号:
    32301796
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
  • 批准号:
    LQ23H150003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
  • 批准号:
    82303936
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
  • 批准号:
    12301258
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
  • 批准号:
    32170797
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
  • 批准号:
    LQ21C060001
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Resonance investigation for SILA: novel linear actuation with non-contact magnetic transmission
SILA 共振研究:具有非接触式磁传输的新型线性驱动
  • 批准号:
    10060949
  • 财政年份:
    2023
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Collaborative R&D
Study on the pressure-dependent luminescence, non-linear optics, and vibrational properties of novel lanthanide complexes
新型稀土配合物的压力依赖性发光、非线性光学和振动特性研究
  • 批准号:
    23K19238
  • 财政年份:
    2023
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developing a novel mouse brain biomechanical model with the detailed 3D, non-linear, visco-elastic and anisotropic vasculature
开发具有详细 3D、非线性、粘弹性和各向异性脉管系统的新型小鼠大脑生物力学模型
  • 批准号:
    542373-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of novel non-contact linear actuator by using a photo-initiation
利用光引发开发新型非接触式线性执行器
  • 批准号:
    18K18833
  • 财政年份:
    2018
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Novel Non-Linear Spectroscopic Probes of the Primary Photoreactions of Photolyases and Cryptochromes
光裂合酶和隐花色素初级光反应的新型非线性光谱探针
  • 批准号:
    260966011
  • 财政年份:
    2014
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Independent Junior Research Groups
Novel spin-polarized electron source using a non-linear optical absorption
使用非线性光学吸收的新型自旋极化电子源
  • 批准号:
    25706031
  • 财政年份:
    2013
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Practical development of a novel non-linear discrete image reconstruction method for electron tomography unaffected by the missing data range
不受缺失数据范围影响的新型电子断层扫描非线性离散图像重建方法的实际开发
  • 批准号:
    24510156
  • 财政年份:
    2012
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-linear analysis methods applied to a novel apparatus to model speed
非线性分析方法应用于新型设备来模拟速度
  • 批准号:
    439142-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Development of Novel electrochemical Nanofabrication Processes through Controlling Non-linear Diffusion
通过控制非线性扩散开发新型电化学纳米加工工艺
  • 批准号:
    15560633
  • 财政年份:
    2003
  • 资助金额:
    $ 75.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prediction and understanding of the wall-shear stress modulation by non-linear interactions based on novel machine learning techniques
基于新颖机器学习技术的非线性相互作用对壁剪应力调制的预测和理解
  • 批准号:
    525782963
  • 财政年份:
  • 资助金额:
    $ 75.03万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了