Understanding barriers to accurate early laboratory diagnosis and patient centric control of Gestational Diabetes Mellitus
了解准确的早期实验室诊断和以患者为中心的妊娠期糖尿病控制的障碍
基本信息
- 批准号:EP/T013648/1
- 负责人:
- 金额:$ 11.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gestational diabetes mellitus (GDM) is a condition characterised by high blood glucose levels, with first onset during pregnancy. GDM increases the risk of complications for both mother and child. Evidently, early detection and treatment improve outcomes, but many women are at serious risk of going undiagnosed due to a lack of universally accepted diagnostic criteria, and disagreement over the glucose range deemed healthy. The most commonly used range is reported by the World Health Organisation to be 'somehow arbitrary'. Furthermore, poorly controlled GDM leads to adverse maternal and infant outcomes and increased likelihood of developing type 2 diabetes later in life. On the other hand, tight glucose control increases the risk of severe hypoglycaemia (low glucose levels), which may also compromise the wellbeing of mother and child. The overall clinical goal is to improve the criteria, enable diagnosis as early as possible in pregnancy, discover better GDM markers and improve management of the condition to ensure that blood glucose levels remain under control throughout pregnancy. In addition to the impact on wellbeing and quality of life for both mother and child, any improvement in the management of this condition will reduce the burden on the national economy. By facilitating hospital-based training for an engineering scientist, this discipline hop has the following aims:- gaining for the principal investigator of a full grasp of the clinical challenges preventing the transformation of diagnosis and treatment of GDM;- the establishment of a permanent network linking engineering science specialists with endocrinologists, obstetricians, pathologists, other allied healthcare colleagues and patients to tackle together the unsolved challenges of effective GDM care;- the co-creation by the principal investigator and the other stakeholders above of a research strategy to improve GDM care.The project will look at utilisation of routinely collected NHS data for research, give consideration to glucose variability to go beyond diagnosis based on glucose levels at single time points, and to personalisation for better management of glucose variability throughout pregnancy. The training will include:(a) engagement with patients and clinical professionals to understand how GDM is currently managed in the clinic, the practical realities constraining current practice, and how patients and different clinical professionals envisage improving care beyond today's approaches founded on population averages towards personalised alternatives(b) training in available databases and laboratory sample testing to learn the structure of routinely collected NHS data, identify their limitations, and the implications for data analyses and modelling(c) training in Good Clinical Practice covering ethical and regulatory requirements for research, the code of conduct for clinic-based research, a researcher's responsibilities towards study participants, limitations of measurements, reliability of data and other areas that are typically left unexplored by engineering and physical sciences researchers, and(d) experience in recruitment for longitudinal measurements, together with assessment of our ability to recruit and the feasibility of personalisation based on longitudinal data obtained from continuous glucose monitoring, via preliminary data analysis and modelling.As a long-term goal, the emergent collaboration aims to support the EPSRC Healthy Nation programme via better understanding of individual glucose variability, optimised care through effective diagnosis, patient-specific prediction and evidence-based treatment planning, minimisation of costs of care and reduction of risks to GDM patients and their children. The knowledge acquired from the project will form a platform to translate our findings into a large scale trial, which in turn can form the basis of changing current clinical practice in this field.
妊娠期糖尿病(GDM)是一种以高血糖水平为特征的疾病,在妊娠期间首次发病。GDM增加了母亲和儿童并发症的风险。显然,早期发现和治疗可以改善结果,但由于缺乏普遍接受的诊断标准,以及对健康血糖范围的分歧,许多妇女面临未被诊断的严重风险。据世界卫生组织报道,最常用的范围是“某种程度上任意的”。此外,控制不良的GDM会导致不良的母婴结局,并增加日后患2型糖尿病的可能性。另一方面,严格控制血糖会增加严重低血糖(低血糖水平)的风险,这也可能损害母亲和孩子的健康。总体临床目标是改善妊娠期糖尿病的诊断标准,尽早诊断,发现更好的GDM标志物,改善病情管理,以确保整个妊娠期血糖水平得到控制。除了对母亲和孩子的福祉和生活质量产生影响外,对这种情况的管理的任何改善都将减轻国民经济的负担。通过促进以医院为基础的工程科学家培训,该学科hop有以下目标:-使主要研究者充分掌握预防GDM诊断和治疗转变的临床挑战;-建立一个永久的网络,将工程科学专家与内分泌学家、产科医生、病理学家、其他联合医疗保健同事和患者联系起来,共同应对有效的糖尿病护理方面尚未解决的挑战;-由首席研究员和上述其他利益相关者共同制定一项改善GDM护理的研究策略。该项目将着眼于利用常规收集的NHS数据进行研究,考虑血糖变异性,以超越基于单个时间点血糖水平的诊断,并在整个妊娠期间更好地管理血糖变异性的个性化。培训将包括:(a)与患者和临床专业人员接触,了解目前临床如何管理GDM,限制当前实践的实际现实,以及患者和不同的临床专业人员如何设想改善护理,而不是今天基于人口平均水平的方法,而是个性化的替代方案(b)可用数据库和实验室样本测试的培训,以了解常规收集的NHS数据的结构。确定其局限性,以及对数据分析和建模的影响(c)良好临床实践的培训,包括研究的伦理和监管要求、临床研究的行为准则、研究人员对研究参与者的责任、测量的局限性、数据的可靠性以及工程和物理科学研究人员通常未探索的其他领域,以及(d)纵向测量的招聘经验。通过初步数据分析和建模,根据连续血糖监测获得的纵向数据,评估我们的招聘能力和个性化的可行性。作为长期目标,这项紧急合作旨在通过更好地了解个体血糖变化、通过有效诊断、患者特异性预测和循证治疗计划优化护理、最大限度地降低护理成本和降低GDM患者及其子女的风险来支持EPSRC健康国家计划。从该项目中获得的知识将形成一个平台,将我们的发现转化为大规模的试验,这反过来可以形成改变该领域当前临床实践的基础。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Glucose-Only Model to Extract Physiological Information from Postprandial Glucose Profiles in Subjects with Normal Glucose Tolerance.
- DOI:10.1177/19322968211026978
- 发表时间:2022-11
- 期刊:
- 影响因子:5
- 作者:Eichenlaub, Manuel M.;Khovanova, Natasha A.;Gannon, Mary C.;Nuttall, Frank Q.;Hattersley, John G.
- 通讯作者:Hattersley, John G.
Comment on "Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials".
评论“定量葡萄糖代谢的最小和最大模型:测量、模拟和运行计算机临床试验的工具”。
- DOI:10.1177/19322968211053884
- 发表时间:2022
- 期刊:
- 影响因子:5
- 作者:Eichenlaub M
- 通讯作者:Eichenlaub M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasha Khovanova其他文献
Natasha Khovanova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natasha Khovanova', 18)}}的其他基金
Novel approach to clinical data analysis: application to kidney transplantation
临床数据分析的新方法:在肾移植中的应用
- 批准号:
EP/K02504X/1 - 财政年份:2013
- 资助金额:
$ 11.02万 - 项目类别:
Research Grant
相似海外基金
Mobile phone-based screening for anemia in young children in western Kenya
基于手机的肯尼亚西部幼儿贫血筛查
- 批准号:
10752968 - 财政年份:2023
- 资助金额:
$ 11.02万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 11.02万 - 项目类别:
Improving patient safety and hospital hygiene through the efficient and accurate identification of patients with antimicrobial resistant organisms (AROs) using clinical support tools in electronic medical records
使用电子病历中的临床支持工具高效、准确地识别抗菌药物耐药微生物 (ARO) 患者,提高患者安全和医院卫生
- 批准号:
478042 - 财政年份:2023
- 资助金额:
$ 11.02万 - 项目类别:
Operating Grants
Establishing and Implementing Pneumonia Diagnosis in ED Older Adults: A Mixed Methods Approach
在急诊科老年人中建立和实施肺炎诊断:混合方法
- 批准号:
10513959 - 财政年份:2022
- 资助金额:
$ 11.02万 - 项目类别:
Establishing and Implementing Pneumonia Diagnosis in ED Older Adults: A Mixed Methods Approach
在急诊科老年人中建立和实施肺炎诊断:混合方法
- 批准号:
10705136 - 财政年份:2022
- 资助金额:
$ 11.02万 - 项目类别:
Anxiety diagnostic accuracy in VA primary care mental health integration settings: Identifying barriers and facilitators to inform a learning health care system
退伍军人事务部初级保健心理健康整合环境中的焦虑诊断准确性:识别障碍和促进因素,为学习型医疗保健系统提供信息
- 批准号:
10835851 - 财政年份:2019
- 资助金额:
$ 11.02万 - 项目类别:
Anxiety diagnostic accuracy in VA primary care mental health integration settings: Identifying barriers and facilitators to inform a learning health care system
退伍军人事务部初级保健心理健康整合环境中的焦虑诊断准确性:识别障碍和促进因素,为学习型医疗保健系统提供信息
- 批准号:
10209956 - 财政年份:2019
- 资助金额:
$ 11.02万 - 项目类别:
NOVEL STRATEGIES TO IMPROVE LIVER CANCER SURVEILLANCE UPTAKE AND EARLY DETECTION
提高肝癌监测率和早期检测率的新策略
- 批准号:
10229408 - 财政年份:2018
- 资助金额:
$ 11.02万 - 项目类别:
NOVEL STRATEGIES TO IMPROVE LIVER CANCER SURVEILLANCE UPTAKE AND EARLY DETECTION
提高肝癌监测率和早期检测率的新策略
- 批准号:
10457301 - 财政年份:2018
- 资助金额:
$ 11.02万 - 项目类别:
CAREER: Accurate Electrochemical Barriers Accelerated by Machine-learning
职业:机器学习加速准确的电化学势垒
- 批准号:
1553365 - 财政年份:2016
- 资助金额:
$ 11.02万 - 项目类别:
Standard Grant