Ferroelectric gating for agile and reconfigurable 2D electronics
用于敏捷和可重构二维电子器件的铁电门控
基本信息
- 批准号:EP/T027207/1
- 负责人:
- 金额:$ 107.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Smart technologies are infiltrating our daily lives. From healthcare to transport to entertainment, electronics that adapt to our desires are becoming ubiquitous. For electronics hardware, this is creating a pull for the design of responsive and agile next generation technologies that can provide rapid, flexible and multifunctional devices.To realise electronic functionality, voltages are used to control the electrical properties of materials, changing the conductivity of a channel to create transistors, diodes, memory elements and more, with the function tied to the device geometry. The performance of the electrical device depends on both the material used for the conducting channel and the way the voltage is coupled to it. Similar devices are also used to probe the fundamental Physics of electronic interactions in materials, where a voltage can be used to control the number of charge carriers in the material in order to study the effect of interactions between them. These interactions can lead to novel phases, such as unconventional superconductivity or reversible transitions from metallic to insulating behaviour, that offer new opportunities for advanced electronics. The functionality of the devices is thus tied to the design and integration of advanced functional materials to engender the optimal physical properties to the conducting channel and its most efficient coupling to the applied control voltage. For the conducting channel, two-dimensional materials (2DMs) are one of the most exciting areas of research and are an area in which the UK is truly world-leading. There are now large and diverse families of 2DMs, with metallic, semiconducting, insulating, magnetic, superconducting and more properties. As they are atomically thin, the external voltage effects all of the atoms in the 2DM equally, giving more defined control over the conductivity than in conventional three-dimensional materials. Coupling to external voltages, with spatial control over the pattern of applied voltages, can be used to create highly efficient light-emitting diodes, transistors, and memory elements. What is achievable is usually limited by the coupling to the external voltage.Ferroelectrics offer the potential to dynamically control this coupling, with nanoscale spatial resolution and fast switching. A ferroelectric has a spontaneous polarisation, with a large net surface charge, organised in nanoscale domains of positive or of negative surface charge. If a 2DM is placed on a ferroelectric, with a clean interface between them, this surface charge can dramatically alter the electronic properties of the 2DM by changing the number of charge carriers in the 2DM. By dynamically controlling the domain structure in the ferroelectric, fast and agile 2D electronics can be formed. Unfortunately, although proof-of-principle devices have been made, efficient coupling between ferroelectrics and 2DM has not yet been achieved.Our team is uniquely suited to address this challenge, developing optimised processes for integrating 2DMs and ferroelectrics and demonstrating new agile electronics based on moving and switching the domains in the ferroelectric. By doing this, we will bring together two important fields, taking the potential of each to create a new area that will give new opportunities for probing fundamental Physics and developing new electronics.
智能技术正在渗透到我们的日常生活中。从医疗到交通再到娱乐,满足我们需求的电子产品正变得无处不在。对于电子硬件来说,这正在为响应迅速和敏捷的下一代技术的设计创造动力,这些技术可以提供快速、灵活和多功能的设备。为了实现电子功能,电压被用来控制材料的电性能,改变通道的导电性,以创建晶体管、二极管、存储元件等,其功能与器件的几何形状相关联。电气设备的性能取决于用于导电通道的材料和与之耦合的电压方式。类似的设备也被用于探测材料中电子相互作用的基本物理,其中电压可以用来控制材料中电荷载流子的数量,以研究它们之间相互作用的影响。这些相互作用可以导致新的相,例如非常规的超导性或从金属到绝缘行为的可逆转变,为先进的电子产品提供了新的机会。因此,器件的功能与先进功能材料的设计和集成有关,以产生导电通道的最佳物理特性及其与施加的控制电压的最有效耦合。对于导电通道,二维材料(2dm)是最令人兴奋的研究领域之一,也是英国真正处于世界领先地位的领域。现在有大量不同的2dm家族,具有金属、半导体、绝缘、磁性、超导等特性。由于它们是原子薄的,外部电压对2DM中的所有原子都有相同的影响,与传统的三维材料相比,对电导率有更明确的控制。与外部电压的耦合,以及对施加电压模式的空间控制,可用于制造高效的发光二极管、晶体管和存储元件。可实现的通常受限于与外部电压的耦合。铁电体提供了动态控制这种耦合的潜力,具有纳米级的空间分辨率和快速切换。铁电具有自发极化,具有较大的净表面电荷,组织在纳米级的正或负表面电荷域。如果将2DM放置在铁电体上,它们之间有一个干净的界面,这种表面电荷可以通过改变2DM中载流子的数量来显著改变2DM的电子特性。通过对铁电畴结构的动态控制,可以形成快速灵活的二维电子器件。不幸的是,尽管已经制造了原理验证设备,但铁电体和2DM之间的有效耦合尚未实现。我们的团队非常适合应对这一挑战,开发了集成2dm和铁电体的优化流程,并展示了基于铁电体中移动和切换域的新型敏捷电子产品。通过这样做,我们将把两个重要的领域结合在一起,发挥每个领域的潜力,创造一个新的领域,为探索基础物理学和发展新的电子学提供新的机会。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dual-Ferroelectric-Coupling-Engineered Two-Dimensional Transistors for Multifunctional In-Memory Computing
- DOI:10.1021/acsnano.2c00079
- 发表时间:2022-02-22
- 期刊:
- 影响因子:17.1
- 作者:Luo, Zheng-Dong;Zhang, Siqing;Hao, Yue
- 通讯作者:Hao, Yue
Enhanced Photoconductivity at Dislocations in SrTiO3
SrTiO3 中位错处的光电导性增强
- DOI:10.26083/tuprints-00023232
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kissel M
- 通讯作者:Kissel M
Photoinduced Negative Differential Resistivity and Gunn Oscillations in SrTiO3.
- DOI:10.1002/advs.202306420
- 发表时间:2023-12
- 期刊:
- 影响因子:15.1
- 作者:Soleimany, Mehrzad;Alexe, Marin
- 通讯作者:Alexe, Marin
ARPES Signatures of Few-Layer Twistronic Graphenes.
- DOI:10.1021/acs.nanolett.3c01173
- 发表时间:2023-06-14
- 期刊:
- 影响因子:10.8
- 作者:Nunn, James E. E.;McEllistrim, Andrew;Weston, Astrid;Garcia-Ruiz, Aitor;Watson, Matthew D. D.;Mucha-Kruczynski, Marcin;Cacho, Cephise;Gorbachev, Roman V. V.;Fal'ko, Vladimir I. I.;Wilson, Neil R. R.
- 通讯作者:Wilson, Neil R. R.
ARPES signatures of few-layer twistronic graphenes
几层双电子石墨烯的 ARPES 特征
- DOI:10.48550/arxiv.2304.01931
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nunn J
- 通讯作者:Nunn J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marin Alexe其他文献
Origins of domain wall pinning in ferroelectric nanocapacitors
- DOI:
10.1186/s40580-014-0024-4 - 发表时间:
2014-09-12 - 期刊:
- 影响因子:11.000
- 作者:
Yunseok Kim;Hee Han;Ionela Vrejoiu;Woo Lee;Dietrich Hesse;Marin Alexe - 通讯作者:
Marin Alexe
A 2D hybrid perovskite ferroelectric with switchable polarization and photoelectric robustness down to monolayer
具有可切换极化和光电鲁棒性低至单层的二维杂化钙钛矿铁电体
- DOI:
10.1038/s41467-025-58164-z - 发表时间:
2025-03-28 - 期刊:
- 影响因子:15.700
- 作者:
Yuzhong Hu;Haidong Lu;Shehr Bano Masood;Clemens Göhler;Shangpu Liu;Alexei Gruverman;Marin Alexe - 通讯作者:
Marin Alexe
Piezoresponse force microscopy and nanoferroic phenomena
压电力显微镜与纳米铁电现象
- DOI:
10.1038/s41467-019-09650-8 - 发表时间:
2019-04-10 - 期刊:
- 影响因子:15.700
- 作者:
Alexei Gruverman;Marin Alexe;Dennis Meier - 通讯作者:
Dennis Meier
Ferroelastic writing of crystal directions in oxide thin films
氧化物薄膜中晶体取向的铁弹性写入
- DOI:
10.1038/s41565-025-01950-z - 发表时间:
2025-06-05 - 期刊:
- 影响因子:34.900
- 作者:
Wei Peng;Wenjie Meng;Younji Kim;Jiyong Yoon;Liang Si;Kesen Zhao;Shuai Dong;Yubin Hou;Chuanying Xi;Li Pi;Aditya Singh;Ana M. Sanchez;Richard Beanland;Tae Won Noh;Qingyou Lu;Daesu Lee;Marin Alexe - 通讯作者:
Marin Alexe
Marin Alexe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marin Alexe', 18)}}的其他基金
Ferroelectric, ferroelastic, and multiferroic domain walls: a new horizon in functional materials
铁电、铁弹性和多铁畴壁:功能材料的新视野
- 批准号:
EP/P025803/1 - 财政年份:2017
- 资助金额:
$ 107.06万 - 项目类别:
Research Grant
Ferrotoroidic structures: polar flux-closure, vortices and skyrmions
铁磁结构:极磁通闭合、涡流和斯格明子
- 批准号:
EP/P031544/1 - 财政年份:2017
- 资助金额:
$ 107.06万 - 项目类别:
Research Grant
Vector field and pulsed light assisted variable temperature scanning probe microscope for time and space resolved nano-characterisations
矢量场和脉冲光辅助变温扫描探针显微镜,用于时间和空间分辨的纳米表征
- 批准号:
EP/M022706/1 - 财政年份:2015
- 资助金额:
$ 107.06万 - 项目类别:
Research Grant
相似国自然基金
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于GEM读出的TPC系统中正离子反馈机制和抑制方法的研究
- 批准号:10975090
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 107.06万 - 项目类别:
The noncanonical roles of FMRP in gating the pathogenesis and rescue of Fragile X Syndrome
FMRP 在控制脆性 X 综合征的发病机制和挽救中的非典型作用
- 批准号:
487764 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别:
Operating Grants
The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
- 批准号:
10677342 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别:
Noradrenergic gating of astrocyte calcium-mediated homeostasis in vivo
星形胶质细胞钙介导体内稳态的去甲肾上腺素能门控
- 批准号:
10679269 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:
10785755 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别:
Modifying endothelial Piezo 1 function to improve brain perfusion in AD/ADRD
修改内皮 Piezo 1 功能以改善 AD/ADRD 患者的脑灌注
- 批准号:
10658645 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别:
Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
- 批准号:
10583283 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别:
Regulation of GluN2B-NMDA Receptors by Interactions with the Actin Cytoskeleton
通过与肌动蛋白细胞骨架相互作用调节 GluN2B-NMDA 受体
- 批准号:
10606121 - 财政年份:2023
- 资助金额:
$ 107.06万 - 项目类别: