Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
基本信息
- 批准号:10736927
- 负责人:
- 金额:$ 35.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-25 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsActomyosinAddressAffectArthritisAtherosclerosisAutoimmune DiseasesBehaviorBehavior ControlBiochemicalBiological ProcessBiosensorCell PolarityCellsChemicalsCuesCytoskeletonDefectDevelopmentDiseaseDisseminated Malignant NeoplasmDrug TargetingElementsEnvironmentExperimental GeneticsF-ActinFamilyFeedbackFluorescence Resonance Energy TransferGlioblastomaGoalsGuanosine Triphosphate PhosphohydrolasesHL60ImageImmuneImmune responseIndividualInflammationInflammatoryLeukocytesLightMaintenanceMapsMeasurementMeasuresMediatingMediatorMicroscopyModelingMolecularMolecular TargetMutation AnalysisNatureNeoplasm MetastasisOpticsOutputPatternPlayProcessProteinsProteomicsRegulationResearchResolutionRoleSignal PathwaySignal TransductionStructureSurvival RateSystemTestingTissuesTravelcancer cellcell motilitycell typedepolymerizationexperimental studyimproved outcomemigrationneutrophilnew therapeutic targetnovel therapeutic interventionoptogeneticsreceptorrecruitredshiftresponserhorho GTP-Binding Proteinsscaffoldsegregationtool
项目摘要
PROJECT SUMMARY/ABSTRACT
Persistent cell migration is fundamental for immune responses, development, and the dissemination of cancer
cells. This migration requires the establishment and maintenance of stable cell polarity, even while a cell
integrates noisy heterogeneous cues from its environment. To achieve this, Rho family GTPases act as central
hubs that organize signaling cascades and cytoskeletal rearrangements into subcellular domains. Feedback and
crosstalk connections are thought to be central to this pattern-forming ability. However, the wiring of this circuit
is still incompletely understood, and there are major gaps in our understanding of how negative regulators limit
and separate spatial domains. Determining these molecular connections in migrating leukocytes would identify
new therapeutic targets for treating inflammation and would be broadly relevant for understanding Rho GTPase
function in many cell types and biological processes. Major obstacles to progress have been the fast timescale
and inherently spatial nature of the signaling system. To address these challenges, we have developed new
molecular tools that allow us to control the activity of individual key components with light while measuring the
response of a second component with subcellular resolution in live single cells. Our preliminary results indicate
that in addition to acting as outputs to move the cell, different actin assemblies are intimately involved in the
biochemical wiring of Rho GTPase crosstalk. We have identified an “actin-gated” crosstalk connection between
RhoA and Cdc42, and we have identified the protein Arhgap30 as a previously unappreciated primary regulator
of Cdc42 that is critical for polarization and migration in leukocytes. We hypothesize that different actin
assemblies act as scaffolds to localize regulators of Rho GTPase crosstalk, creating subcellular zones with
distinct signal wiring to promote stable cell polarity. Specifically, we aim to 1) determine how branched actin
assembly regulates Cdc42 and RhoA activities in leukocyte cells, 2) determine how the local actin network
structure controls crosstalk between RhoA and Cdc42, and 3) determine the regulation and role of Arhgap30 in
crosstalk and polarity signaling. Our approach will combine new tool sets for optical control of signaling and
cytoskeletal components with simultaneous measurement of actin assemblies and Rho GTPase activities in
single cells. In combination, we will use chemical perturbations, mutational analysis, and biochemical
approaches to characterize molecular connections. Our long-term goals are to determine how reciprocal
regulation between actin and Rho GTPases creates robust polarity in multiple cell types, including leukocytes
and disseminating cancer cells. The proposed research will advance our basic understanding of how biochemical
signaling pathways both generate and stabilize subcellular domains to control behaviors such as cell migration.
项目总结/摘要
持续的细胞迁移是免疫反应、发展和癌症传播的基础
细胞这种迁移需要建立和维持稳定的细胞极性,即使细胞
整合来自环境的嘈杂的异质线索。为了实现这一点,Rho家族GTP酶作为核心
组织信号级联和细胞骨架重排进入亚细胞结构域的枢纽。反馈和
串扰连接被认为是这种图案形成能力的核心。然而,这个电路的布线
仍然没有完全理解,我们对负调节器如何限制
分离的空间域。确定这些迁移白细胞中的分子连接,
这是治疗炎症的新的治疗靶点,并将与理解Rho GT3广泛相关
在许多细胞类型和生物过程中发挥作用。进展的主要障碍是时间表过快
以及信号系统固有的空间特性。为了应对这些挑战,我们开发了新的
分子工具,使我们能够控制活动的个别关键组成部分与光,同时测量
在活的单细胞中具有亚细胞分辨率的第二组分的响应。我们的初步结果表明
除了作为输出来移动细胞外,不同的肌动蛋白组件密切参与了细胞的运动。
Rho GT3串扰的生化布线。我们已经确定了一个“肌动蛋白门控”串扰连接之间
RhoA和Cdc 42,我们已经确定了蛋白质Arhgap 30作为一个以前不受重视的主要调节因子
Cdc 42是白细胞极化和迁移的关键。我们假设不同肌动蛋白
组装作为支架定位Rho GT3串扰的调节器,产生亚细胞区,
独特的信号线,以促进稳定的细胞极性。具体来说,我们的目标是1)确定分支肌动蛋白
组装调节白细胞中Cdc 42和RhoA活性,2)确定局部肌动蛋白网络如何
结构控制RhoA和Cdc 42之间的串扰,以及3)确定Arhgap 30在RhoA和Cdc 42中的调节和作用。
串扰和极性信令。我们的方法将结合联合收割机新的工具集,用于光控制信令,
细胞骨架成分,同时测量肌动蛋白组装和Rho GT3活性,
单细胞结合起来,我们将使用化学扰动,突变分析和生化分析。
表征分子连接的方法。我们的长期目标是确定
肌动蛋白和Rho GTP酶之间的调节在多种细胞类型中产生了强大的极性,包括白细胞
和扩散癌细胞。这项拟议中的研究将推进我们对生物化学如何
信号通路产生并稳定亚细胞结构域以控制诸如细胞迁移的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Ryan Collins其他文献
Sean Ryan Collins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 35.69万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 35.69万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 35.69万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 35.69万 - 项目类别:
Postdoctoral Fellowships