TERASWITCH - Towards low dissipation THz-induced switching of magnetic materials
TERASWITCH - 实现磁性材料的低耗散太赫兹感应开关
基本信息
- 批准号:EP/T027916/2
- 负责人:
- 金额:$ 0.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnetisation switching between two stable bit states (1 and 0) is the key principle of modern-day storage technology. With the explosion in the number of "always connected" devices, and the consumer desire for multimedia and social media content, the volume of data being stored and processed globally has risen at an unprecedented rate, as evidenced by the number of new data centres being built (e.g. Facebook's new data centre in Singapore). The vast quantities of data being generated globally is leading to the emergence of new markets with companies exploiting and trading data in diverse ways - an EU estimate values the digital economy in Europe will be worth 739bn euros by 2020[1]. This growing demand for data storage poses several big questions: where is this volume of data going to be stored? How can the growing demand for data storage and processing be made compatible with the political and social imperative for energy responsibility and, ideally, carbon neutrality? It is estimated that 20% of the world's electricity demand will be used to power data centres by 2025[2], a figure that will undoubtedly grow, and therefore any technology that reduces the energy requirements of data processing and storage is of great national and international importance. This proposal concerns research into reducing the energy use involved in data storage and processing.Magnetic hard disk drives still form most of the data storage at the server (and hence cloud) level due to their low cost per bit. However, the process of writing information in disk drives uses a relatively large amount of energy due to the magnetic field needed to toggle bits between the two states. Studies in ultrafast magnetization dynamics using femtosecond (1 femtosecond is one millionth of a billionth of a second) laser pulses have demonstrated that low-energy switching is possible, using orders of magnitude less energy. Switching in these studies occurs within two picoseconds (one picosecond is a thousandth of a billionth of a second) opening up the possibility of writing up to 10^12 (a million million) bits per second, one thousand times faster than conventional recording methods, an extremely attractive avenue to realise much faster and more responsive devices that requires research investment. However, the use of strong laser pulses often results in a large amount of heating and can excite a lot of non-linear dynamics. One possible solution to this is to use light at frequencies that are in the THz range with high intensities. Historically, it has been very difficult to generate such light pulses, but recent experimental developments have made this possible and the area of THz science in general has attracted significant attention over the past decade and more recently to control magnetism. Initial studies have shown that significantly lower amounts of energy are required to switch the magnetisation state than in conventional recording, which could revolutionise the way we store and process information. This proposal is aimed at developing these ideas with the goal of understanding the underlying physical processes and how we can engineer efficient, low energy control of magnetism. The work will be carried out alongside world-leading experimental groups to provide important validation and comparisons with theoretical work.1 - https://ec.europa.eu/digital-single-market/en/news/final-results-european-data-market-study-measuring-size-and-trends-eu-data-economy2 - https://data-economy.com/data-centres-world-will-consume-1-5-earths-power-2025/
磁化在两个稳定的比特状态(1和0)之间切换是现代存储技术的关键原理。随着“始终连接”设备数量的爆炸式增长以及消费者对多媒体和社交媒体内容的需求,全球存储和处理的数据量以前所未有的速度增长,新建数据中心的数量(例如Facebook在新加坡的新数据中心)就是明证。全球产生的大量数据正在导致新市场的出现,公司以不同的方式利用和交易数据-欧盟估计,到2020年,欧洲的数字经济价值将达到7390亿欧元[1]。对数据存储的需求不断增长,这提出了几个大问题:这些数据将存储在哪里?如何使对数据存储和处理的日益增长的需求与能源责任的政治和社会需求以及理想的碳中和相兼容?据估计,到2025年,全球20%的电力需求将用于为数据中心供电[2],这一数字无疑将继续增长,因此任何降低数据处理和存储能源需求的技术都具有重要的国家和国际意义。该提案涉及减少数据存储和处理所涉及的能源使用的研究。由于其每比特的低成本,磁性硬盘驱动器仍然构成服务器(因此也是云)级别的大部分数据存储。然而,在磁盘驱动器中写入信息的过程由于在两种状态之间切换位所需的磁场而使用相对大量的能量。使用飞秒(1飞秒是十亿分之一秒的百万分之一)激光脉冲的超快磁化动力学研究表明,低能量开关是可能的,使用数量级更少的能量。在这些研究中,转换发生在两皮秒(一皮秒是十亿分之一秒的千分之一)内,这使得每秒写入高达10^12(百万分之一)比特的可能性成为可能,比传统的记录方法快一千倍,这是一个非常有吸引力的途径,可以实现更快、更灵敏的设备,需要研究投资。然而,强激光脉冲的使用通常会导致大量的加热,并且可以激发许多非线性动力学。对此的一个可能的解决方案是使用具有高强度的THz范围内的频率的光。从历史上看,产生这样的光脉冲是非常困难的,但最近的实验发展使这成为可能,在过去的十年中,THz科学领域已经引起了人们的极大关注,最近又被用来控制磁性。初步研究表明,与传统记录相比,切换磁化状态所需的能量要低得多,这可能会彻底改变我们存储和处理信息的方式。该提案旨在发展这些想法,目的是了解潜在的物理过程以及我们如何设计有效,低能量的磁性控制。这项工作将与世界领先的实验小组一起进行,以提供重要的验证和与理论工作的比较。1-https://ec.europa.eu/digital-single-market/en/news/final-results-european-data-market-study-measuring-size-and-trends-eu-data-economy2-https://data-economy.com/data-centres-world-will-consume-1-5-earths-power-2025/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Ostler其他文献
Thomas Ostler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Ostler', 18)}}的其他基金
TERASWITCH - Towards low dissipation THz-induced switching of magnetic materials
TERASWITCH - 实现磁性材料的低耗散太赫兹感应开关
- 批准号:
EP/T027916/1 - 财政年份:2020
- 资助金额:
$ 0.04万 - 项目类别:
Research Grant
相似海外基金
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 0.04万 - 项目类别:
Research Grant
Towards widespread use of cardiac MRI using new affordable low magnetic field (0.55T) MRI scanner and AI
使用新型经济实惠的低磁场 (0.55T) MRI 扫描仪和 AI 实现心脏 MRI 的广泛使用
- 批准号:
2904562 - 财政年份:2024
- 资助金额:
$ 0.04万 - 项目类别:
Studentship
Towards Low Cost Soil Fertility Sensor Systems for Smallholder Food Security in Kenya
为肯尼亚小农粮食安全打造低成本土壤肥力传感器系统
- 批准号:
EP/Y001826/1 - 财政年份:2024
- 资助金额:
$ 0.04万 - 项目类别:
Research Grant
A unifying model for ion exchange membranes – towards a low carbon future
离子交换膜的统一模型 — 迈向低碳未来
- 批准号:
DP240101405 - 财政年份:2024
- 资助金额:
$ 0.04万 - 项目类别:
Discovery Projects
Towards treatment for the complex patient: investigations of low-intensity focused ultrasound.
针对复杂患者的治疗:低强度聚焦超声的研究。
- 批准号:
10775216 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
mHealth OAE: Towards Universal Newborn Hearing Screening in Kenya (mTUNE)
mHealth OAE:迈向肯尼亚全民新生儿听力筛查 (mTUNE)
- 批准号:
10738905 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Towards understanding transition mechanism and application to heat transfer enhancement of elasto-inertia turbulence at low Reynolds number based on vortex modulation
基于涡旋调制的低雷诺数弹惯性湍流传热强化的理解和应用
- 批准号:
23K19093 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
M3OLR: Towards Effective Multilingual, Multimodal and Multitask Oriental Low-resourced Language Speech Recognition
M3OLR:迈向有效的多语言、多模态和多任务东方稀缺语言语音识别
- 批准号:
23K11227 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Towards Low-Energy Tests of Quantum Gravity with AMO Systems
职业生涯:利用 AMO 系统进行量子引力的低能量测试
- 批准号:
2239498 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Continuing Grant
Towards Harmonic Analysis in Wasserstein Space: Low-Dimensional Structures, Learning, and Algorithms
Wasserstein 空间中的调和分析:低维结构、学习和算法
- 批准号:
2309519 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Continuing Grant