Conformal Approach to Modelling Random Aggregation

随机聚合建模的共形方法

基本信息

  • 批准号:
    EP/T027940/1
  • 负责人:
  • 金额:
    $ 51.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

My research will make a major contribution to solving a long-standing problem at the interface of probability, complex analysis and mathematical physics. The focus is on planar random growth processes which grow by successive aggregation of particles. Of specific interest are Laplacian models: models for which the rate of growth of the cluster boundary is determined by its harmonic measure. These arise in a variety of physical and industrial settings, from cancer to polymer creation. Examples include:- diffusion-limited aggregation (DLA); - the Eden model for biological cell growth;- dielectric-breakdown models for the discharge of lightning.Many random growth models were originally formulated as discrete sets on a lattice. However, progress is sparse in this setting owing to the lack of available mathematical techniques. Indeed, the question of whether there exists a universal scaling limit for DLA has been an important open problem in both mathematics and physics for almost 40 years. I have recently introduced a family of Laplacian random growth models called Aggregate Loewner Evolution (ALE) in which growing clusters are constructed using compositions of conformal mappings. This family includes versions of the physically occurring models above; but also models which I have shown to be analytically tractable. The main aim of this proposal is to establish scaling limits across all parameter ranges for the family of growth processes described by the ALE construction. Specific objectives include:- identifying phase transitions in the large-scale geometry of the clusters; - proving that the fluctuations lie in the Kardar-Parisi-Zhang (KPZ) universality class for certain parameter values;- establishing the relationship between random growth and Schramm-Loewner Evolution (SLE).My proposed methodology involves combining techniques arising in the theory of regularity structures with Loewner evolution. The development of this methodology has the potential to make significant impacts in probability and analysis.
我的研究将为解决一个长期存在的问题,在概率,复杂分析和数学物理的接口作出重大贡献。重点是通过粒子的连续聚集生长的平面随机生长过程。特别令人感兴趣的是拉普拉斯模型:这种模型的簇边界的增长速度是由它的调和测度决定的。这些问题出现在各种物理和工业环境中,从癌症到聚合物制造。例子包括:-扩散限制聚集(DLA);-生物细胞生长的伊甸园模型;-闪电放电的介电击穿模型。许多随机增长模型最初被表述为晶格上的离散集。然而,由于缺乏可用的数学技术,在这种情况下进展很少。事实上,对于DLA是否存在一个普遍的尺度限制的问题已经在数学和物理上成为一个重要的开放问题近40年了。我最近介绍了一组拉普拉斯随机增长模型,称为聚集下层进化(ALE),其中生长簇是使用保形映射的组合构造的。这个系列包括上述物理模型的版本;还包括我所展示的易于分析的模型。该提案的主要目的是在ALE结构所描述的生长过程家族的所有参数范围内建立缩放限制。具体目标包括:-在团簇的大规模几何结构中识别相变;-证明波动存在于某些参数值的kardar - paris - zhang (KPZ)普适类中;-建立随机生长与Schramm-Loewner进化(SLE)之间的关系。我提出的方法包括将正则结构理论中的技术与洛厄纳演化相结合。这种方法的发展有可能对概率和分析产生重大影响。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scaling limits of anisotropic growth on logarithmic time-scales
对数时间尺度上各向异性生长的尺度限制
Scaling limits for planar aggregation with subcritical fluctuations
  • DOI:
    10.1007/s00440-022-01141-0
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    2
  • 作者:
    J. Norris;Vittoria Silvestri;Amanda G. Turner
  • 通讯作者:
    J. Norris;Vittoria Silvestri;Amanda G. Turner
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amanda Turner其他文献

ISA, Identity Development and Mentorship for Teacher Stress
ISA、身份发展和针对教师压力的指导
All Aboard: A Reflection on Delivering a Presentation at an External Organisation
全力以赴:在外部组织进行演讲的反思
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amanda Turner
  • 通讯作者:
    Amanda Turner
Patient-Centred Care Model for Indigenous Australians in Tertiary Cardiac Unit
  • DOI:
    10.1016/j.hlc.2019.05.126
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vivian Bryce;Sean Grugan;Sonia Renouf;Amanda Turner;Hua Bing Yong;Scott Mitchell;Danielle Harrop;Arnold Ng;William Wang
  • 通讯作者:
    William Wang
Key Principles of Urban Indigenous Cardiac Outreach Clinics
  • DOI:
    10.1016/j.hlc.2019.05.161
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vivian Bryce;Sean Grugan;Amanda Turner;Sonia Renouf;Danielle Harrop;Arnold Ng;William Wang
  • 通讯作者:
    William Wang

Amanda Turner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amanda Turner', 18)}}的其他基金

Conformal Approach to Modelling Random Aggregation
随机聚合建模的共形方法
  • 批准号:
    EP/T027940/2
  • 财政年份:
    2022
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Research Grant
Workshop: Random Structures Arising in Physics and Analysis
研讨会:物理和分析中出现的随机结构
  • 批准号:
    EP/N018478/1
  • 财政年份:
    2015
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Research Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

UK Privacy Enhancing Technologies Challenge Prize - Phase 3 Project title: Pandemic Response Modelling with Privacy Enhancing Technology: a place-centric approach
英国隐私增强技术挑战奖 - 第 3 阶段 项目名称:利用隐私增强技术进行流行病响应建模:以地点为中心的方法
  • 批准号:
    900262
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Collaborative R&D
A Unified Experimental and Modelling Approach to Determine the Infectious Viral Bio-Aerosol Filtration Efficacy of Face Coverings.
确定面罩的传染性病毒生物气溶胶过滤功效的统一实验和建模方法。
  • 批准号:
    10074419
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Collaborative R&D
Machine Learning and Reaction Modelling: A Synergistic Approach to Rapid Reactivity Prediction
机器学习和反应建模:快速反应预测的协同方法
  • 批准号:
    2889828
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Studentship
A novel approach for modelling the healthy nose-brain axis in vitro
一种体外模拟健康鼻脑轴的新方法
  • 批准号:
    NC/X001903/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Research Grant
Tackling the functional role of multisensory interactions in behavioural benefits: A combined EEG and computational modelling approach
解决多感官交互在行为益处中的功能作用:脑电图和计算建模相结合的方法
  • 批准号:
    2885836
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Studentship
Modelling cargo loaded macrophage trafficking across liver endothelium: a new approach to drug delivery in liver cancer.
模拟负载巨噬细胞穿过肝内皮的运输:肝癌药物输送的新方法。
  • 批准号:
    2890431
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Studentship
Understanding Society in Real-time: A Joint Nowcasting and Disaggregation Approach to Economic Modelling
实时了解社会:经济建模的联合临近预报和分解方法
  • 批准号:
    2866675
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Studentship
A reverse engineering approach to sucrose replacement in biscuits: modelling texture
饼干中蔗糖替代品的逆向工程方法:纹理建模
  • 批准号:
    2886242
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Studentship
Using latent growth modelling approach for integration and inference from multiple longitudinal microbiome datasets.
使用潜在生长建模方法对多个纵向微生物组数据集进行整合和推断。
  • 批准号:
    475717
  • 财政年份:
    2022
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Studentship Programs
Conformal Approach to Modelling Random Aggregation
随机聚合建模的共形方法
  • 批准号:
    EP/T027940/2
  • 财政年份:
    2022
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了