Development and categorification of a new link invariant
新链接不变量的开发和分类
基本信息
- 批准号:EP/T028408/1
- 负责人:
- 金额:$ 14.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main characters in this project are called links. A link is simply a collection of knots in the 3-dimensional space. These knots can be thought of as everyday knots tied on very thin strings. The broad goal of this proposal is to investigate a new link invariant: the slope, which I, together with two collaborators, defined in 2018. The mathematical study of links goes back to the 19th century with Carl Friedrich Gauss who defined the linking integral, one of the first link invariants. In the 1860s, Lord Kelvin's theory that atoms were knots in the aether led to Peter Guthrie Tait's creation of the first knot tables. Eventually knot theory moved away from physics and became part of the emerging subject of topology. Nowadays it has come back to inform other sciences. Recent discoveries have shed light into our understanding of the biological relevance of knotting phenomena in DNA and other polymers. Moreover, knot theory may be crucial in the construction of quantum computers, through the model of topological quantum computation.Concretely, this project tries to understand a link by isolating one of its components, let us call it K, and trying to understand deep properties about how K interacts with the other knots that make up the link. To this end we look closely at a little neighborhood of K, which is mathematically a torus. This torus has two important curves, the meridian and the longitude, and the idea is to understand how these curves sit in the complement of the link in the space. Now, to get more subtle information on the link, we use the mathematical construction of branched covers, and look at the lifts of the knot K and of the link L in one of these covers. The slope is a complex number associated to K which we read in the branched cover. This number has multiple applications, allowing one to write down powerful formulas about other classic link invariants, like for example the link signature, as I explain in the next paragraph.Given two links, L1 and L2, there is an important operation, called the splice of L1 and L2, which produces a new link, L. Mathematicians have tried to understand how different properties of L1 and L2 behave under the splicing operation. The behaviour of many invariants, such as linking numbers or the Alexander polynomial, has been completely understood for some time now. However, there was a surprising gap in the literature regarding how does the signature of a link behaves under splicing. It is in this context that my collaborators and myself introduced the slope of a link. With this new invariant in hand, we were able to write down the long-sought formula of the signature of the splice of two links. The importance of the slope goes far beyond the above mentioned formula for the signature. Indeed, there is still much to be understood about the slope, which will have consequences in the field of low dimensional topology and beyond. One of the first things we want to do in this project is to get a fast way to compute this invariant. Then, we want to relate it to other known invariants, like Cochran's derivatives and Milnor numbers. These connections are important since the slope will give a generalization of these classic invariants and we will be able to compute them for a much larger class of links. Finally, we want to 'categorify' the slope. This is a mathematical construction which takes an invariant, like the slope, and develops a much richer theory in which the slope is just a tiny part. The idea behind the categorification of the slope sits in the context of Topological Quantum Field Theories. Once the slope is categorified we will obtain an invariant of 3-manifolds, as opposed to links. This invariant will be important, not only to study 3-manifolds, but also to better understand the Topological Quantum Field Theory.
这个项目中的主要角色被称为链接。链接只是三维空间中的节点的集合。这些结可以被认为是绑在非常细的绳子上的日常结。该提案的主要目标是研究一个新的链接不变量:斜率,我和两个合作者在2018年定义了它。数学研究的联系可以追溯到19世纪世纪与卡尔弗里德里希高斯谁定义了连接积分,第一个链接不变量之一。在19世纪60年代,开尔文勋爵关于原子是以太中的结的理论导致了彼得·古特里·泰特创造了第一个结表。最终纽结理论离开了物理学,成为拓扑学新兴学科的一部分。如今,它又回来为其他科学提供信息。最近的发现揭示了我们对DNA和其他聚合物中打结现象的生物相关性的理解。此外,通过拓扑量子计算的模型,纽结理论可能在量子计算机的构建中至关重要。具体地说,这个项目试图通过隔离它的一个组件来理解一个链接,让我们称之为K,并试图理解K如何与组成链接的其他纽结相互作用的深层性质。为此,我们仔细研究K的一个小邻域,它在数学上是一个环面。这个环面有两条重要的曲线,子午线和经度,我们的想法是理解这些曲线是如何在空间中的链接的补充。现在,为了得到关于链接的更微妙的信息,我们使用分支覆盖的数学构造,并查看其中一个覆盖中的结K和链接L的提升。斜率是一个与K相关的复数,我们在分支覆盖中读取。这个数有多种应用,它允许我们写下关于其他经典链接不变量的强大公式,例如链接签名,我将在下一段中解释。给定两个链接,L1和L2,有一个重要的操作,称为L1和L2的拼接,它产生一个新的链接L。数学家们试图理解L1和L2在拼接操作下的不同性质。许多不变量的行为,如连接数或亚历山大多项式,已经完全理解了一段时间。然而,关于链接的签名在剪接下如何表现,文献中存在令人惊讶的空白。正是在这种背景下,我的合作者和我自己介绍了链接的斜率。有了这个新的不变量,我们就能够写出两个链接拼接的签名的长期寻求的公式。斜率的重要性远远超出了上面提到的签名公式。事实上,关于斜率还有很多东西需要理解,这将在低维拓扑学和其他领域产生影响。在这个项目中,我们要做的第一件事就是找到一种快速计算这个不变量的方法。然后,我们想把它与其他已知的不变量联系起来,比如Cochran导数和Milnor数。这些连接是重要的,因为斜率将给出这些经典不变量的推广,我们将能够为更大的链接类计算它们。最后,我们要对斜率进行“分类”。这是一个数学结构,它采用了一个不变量,比如斜率,并发展了一个更丰富的理论,其中斜率只是一个很小的部分。斜率分类背后的想法是拓扑量子场论的背景。一旦斜率被归类,我们将获得3-流形的不变量,而不是链接。这个不变量将是重要的,不仅研究三维流形,而且更好地理解拓扑量子场论。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topology, Geometry, and Dynamics
拓扑、几何和动力学
- DOI:10.1090/conm/772/15483
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Degtyarev A
- 通讯作者:Degtyarev A
Slopes and signatures of links
链接的斜率和签名
- DOI:10.4064/fm136-1-2022
- 发表时间:2022
- 期刊:
- 影响因子:0.6
- 作者:Lecuona A
- 通讯作者:Lecuona A
Cohomology Groups for Spaces of Twelve-Fold Tilings
十二重平铺空间的上同调群
- DOI:10.1093/imrn/rnab117
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Bédaride N
- 通讯作者:Bédaride N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Garcia Lecuona其他文献
Ana Garcia Lecuona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
- 批准号:
24K06666 - 财政年份:2024
- 资助金额:
$ 14.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Categorification and KLR algebras
分类和 KLR 代数
- 批准号:
DP240101809 - 财政年份:2024
- 资助金额:
$ 14.59万 - 项目类别:
Discovery Projects
Categorification of cohomological Donaldson--Thomas invariants
上同调唐纳森--托马斯不变量的分类
- 批准号:
22KJ0616 - 财政年份:2023
- 资助金额:
$ 14.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Foams, Categorification, and Link Homology
泡沫、分类和链接同源性
- 批准号:
2204033 - 财政年份:2022
- 资助金额:
$ 14.59万 - 项目类别:
Standard Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
- 批准号:
2205730 - 财政年份:2022
- 资助金额:
$ 14.59万 - 项目类别:
Standard Grant
Modular Representation Theory and Categorification with Applications
模块化表示理论及其分类及其应用
- 批准号:
2101791 - 财政年份:2021
- 资助金额:
$ 14.59万 - 项目类别:
Standard Grant
Yangians and Cohomological Hall algebras of curves
曲线的杨量和上同调霍尔代数
- 批准号:
21K03197 - 财政年份:2021
- 资助金额:
$ 14.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




