Integrated levitated optomechanical gravimeter
集成悬浮光机重力计
基本信息
- 批准号:EP/V000624/1
- 负责人:
- 金额:$ 106.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Current highly sensitive gravimeters, such as superconducting spheres, atom interferometers, and torsion pendulums, suffer from high manufacture and maintenance cost (up to £400k), bulky size (as large as 2.5m^3) and slow measurement speed (typically 1 hour). Here we propose an exciting innovation in quantifying gravity, based on the frequency measurement of the gravity-induced precession in an optically levitated fast-spinning particle. This novel levitated optomechanical systems (LOMS) gravimeter can be fabricated on a silicon wafer with wafer-level vacuum encapsulation, making its footprint as small as one mm^2. The small size device is mass-producible with a fabrication cost potentially less than £4k. The proposed research uses the analogy of the precession of the Earth, a slow and continuous change in the orientation of the Earth's rotational axis induced by the gravity of the sun, to develop the novel gravimeter. In December 2018, our research for the first time revealed that the precessional motion also appears in sophisticatedly designed LOMS and that optical scattering techniques can precisely measure the frequency of precession [U9]. Our calculation predicts that levitated rotating particles of 10um diameter can achieve the sensitivity of 10^-9 g/sqrt(Hz) and a very fast-spinning particle (GHz reported in 2018 [x19]) can achieve 10^-11 g/sqrt(Hz) sensitivity, respectively. The novel gravimeter can also measure the acceleration due to the Einstein equivalence principle. Thanks to the ultra-high Quality-factor (7.7x10^11 demonstrated in 2017 [x3]) of the rotating particles, the novel sensor will have the potential to cover 11 orders of magnitude of acceleration measurement. Moreover, using the advanced silicon fabrication technique, we will be able to differentiate the centre-of-mass and the centre-of-optical-force of the levitated particle, in order to optimise the range of the gravity (or acceleration) induced torque, and correspondingly design the sensing range and sensitivity of the acceleration, e.g. 10^-6 m/s^2 to 10^5 m/s^2 to cover the seismic and mining health monitoring applications or 1 m/s^2 to 10^11 m/s^2 for fundamental physics research. The sensor only requires short integration times (1ns to 100s, depend on the precession frequency). Thus, it can complete the measurement very rapidly. This novel precession sensing principle can also be utilised to measure force, strain, charge and mass, with similar ultra-wide dynamic range and ultra-high sensitivity potentially.The innovative gravimeter (accelerometer) can be a powerful tool for investigating fundamental physics questions in gravitation, which are pressing and very hard to access experimentally due to the weakness of the gravitational interaction if compared to other interactions. The proposed research can also provide a platform for quantum manipulation of mesoscopic mechanical devices in the nano-scale regime and can serve as a testbed for theoretical predictions.Furthermore, our novel sensor can equipt the oil and gas industry with its applications in CO2-EOR and exploration. It can track temporal and spatial variations of the gravitational field and provide highly accurate information of mass redistribution below the surface. The prototype on-chip LOMS gravimeter has a small footprint so that it can be installed close to the drilling bit. Based on Newton's law of universal gravitation, the gravimeter has the potential to detect 1.5x10^7 kg mass redistribution above the ground, and 1.5x10^5 kg mass redistribution inside the wellbore. The sensitivity of the novel gravimeters installed inside wellbores can be four orders of magnitude better than that of the existing highly sensitive gravimeters. Our research also contributes to CSS, mineral exploration, structural safety monitoring for mining, earthquake warning, inertial navigation and geoscience, and can lead to significant cost savings in multiple industries.
目前的高灵敏度重力仪,如超导球、原子干涉仪和扭转仪,具有制造和维护成本高(高达40万英镑)、体积大(高达2.5 m^3)和测量速度慢(通常为1小时)的缺点。在这里,我们提出了一个令人兴奋的创新,在量化重力的基础上,在光悬浮的快速自旋粒子的重力诱导进动的频率测量。这种新型的悬浮光机系统(LOMS)重力仪可以在硅片上制造,并采用晶圆级真空封装,使其占地面积小至1 mm^2。小尺寸设备可大规模生产,制造成本可能低于4k英镑。拟议的研究使用地球岁差的类比,即太阳引力引起的地球旋转轴方向的缓慢和连续变化,以开发新型重力仪。2018年12月,我们的研究首次揭示了旋进运动也出现在精心设计的LOMS中,并且光学散射技术可以精确测量旋进频率[U9]。我们的计算预测,直径为10 μ m的悬浮旋转粒子可以实现10^-9 g/sqrt(Hz)的灵敏度,非常快速旋转的粒子(2018年报道的GHz [x19])可以分别实现10^-11 g/sqrt(Hz)的灵敏度。由于爱因斯坦等效原理,这种新型重力仪还可以测量加速度。由于旋转粒子的超高质量因子(2017年证明为7.7x10^11),这种新型传感器将有可能覆盖11个数量级的加速度测量。此外,利用先进的硅制造技术,我们将能够区分悬浮粒子的质心和光力中心,以优化重力范围(或加速度)感应转矩,并相应设计加速度的传感范围和灵敏度,例如,10^-6 m/s^2至10^5 m/s^2用于地震和采矿健康监测应用,或1 m/s^2至10^11 m/s^2用于基础物理研究。该传感器只需要很短的积分时间(1 ns至100 s,取决于进动频率)。因此,它可以非常快速地完成测量。这种新颖的进动传感原理还可以用于测量力、应变、电荷和质量,具有类似的超宽动态范围和超高灵敏度。创新的重力仪(加速度计)可以成为研究引力中基本物理问题的有力工具,这些问题是紧迫的,并且由于与其他相互作用相比,引力相互作用的弱点很难通过实验获得。该研究还为介观力学器件在纳米尺度下的量子操纵提供了平台,并可作为理论预测的试验平台,此外,我们的新型传感器可装备石油和天然气工业,用于CO2-EOR和勘探。它可以跟踪重力场的时间和空间变化,并提供高度精确的地表以下质量再分布信息。原型片上LOMS重力仪占地面积小,因此可以安装在靠近钻头的位置。根据牛顿万有引力定律,重力仪有可能检测到地面上方1.5x10^7 kg的质量再分布,以及井筒内部1.5x10^5 kg的质量再分布。安装在井内的新型重力仪的灵敏度可以比现有的高灵敏度重力仪的灵敏度高四个数量级。我们的研究还有助于CSS,矿产勘探,采矿结构安全监测,地震预警,惯性导航和地球科学,并可以在多个行业中节省大量成本。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gravitational Decoherence and the Possibility of Its Interferometric Detection.
- DOI:10.1103/physrevlett.126.200403
- 发表时间:2019-12
- 期刊:
- 影响因子:8.6
- 作者:L. Asprea;A. Bassi;H. Ulbricht;G. Gasbarri
- 通讯作者:L. Asprea;A. Bassi;H. Ulbricht;G. Gasbarri
Ferromagnetic gyroscopes for tests of fundamental physics
- DOI:10.1088/2058-9565/abd892
- 发表时间:2021-04-01
- 期刊:
- 影响因子:6.7
- 作者:Fadeev, Pavel;Timberlake, Chris;Kimball, Derek F. Jackson
- 通讯作者:Kimball, Derek F. Jackson
Collapse Models: A Theoretical, Experimental and Philosophical Review.
- DOI:10.3390/e25040645
- 发表时间:2023-04-12
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Test quantum mechanics in space - invest US$1 billion.
在太空测试量子力学——投资 10 亿美元。
- DOI:10.1038/d41586-021-02091-8
- 发表时间:2021
- 期刊:
- 影响因子:64.8
- 作者:Belenchia A
- 通讯作者:Belenchia A
A way forward for fundamental physics in space.
- DOI:10.1038/s41526-022-00229-0
- 发表时间:2022-11-02
- 期刊:
- 影响因子:5.1
- 作者:Bassi, A.;Cacciapuoti, L.;Capozziello, S.;Dell'Agnello, S.;Diamanti, E.;Giulini, D.;Iess, L.;Jetzer, P.;Joshi, S. K.;Landragin, A.;Le Poncin-Lafitte, C.;Rasel, E.;Roura, A.;Salomon, C.;Ulbricht, H.
- 通讯作者:Ulbricht, H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jize Yan其他文献
A MULTI-DEGREE-OF-FREEDOM ELECTROSTATIC MEMS POWER HARVESTER
多自由度静电 MEMS 能量收集器
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Z. Wong;Jize Yan;K. Soga;A. Seshia - 通讯作者:
A. Seshia
Internal electrical and mechanical phase inversion for coupled resonator array MEMS filters
用于耦合谐振器阵列 MEMS 滤波器的内部电气和机械相位反转
- DOI:
10.1016/j.sna.2009.12.011 - 发表时间:
2010 - 期刊:
- 影响因子:4.6
- 作者:
Jize Yan;A. Seshia;K. L. Phan;J. V. Beek - 通讯作者:
J. V. Beek
Multi-frequency Operation of a MEMS Vibration Energy Harvester by Accessing Five Orders of Parametric Resonance
通过访问五阶参量谐振对 MEMS 振动能量采集器进行多频操作
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Y. Jia;Jize Yan;Kenichi Soga;A. Seshia - 通讯作者:
A. Seshia
Characterization of Al-doped Mn–Co–Ni–O NTC thermistor films prepared by the magnetron co-sputtering approach
磁控共溅射Al掺杂Mn-Co-Ni-O NTC热敏电阻薄膜的表征
- DOI:
10.1016/j.jallcom.2020.154831 - 发表时间:
2020-08 - 期刊:
- 影响因子:6.2
- 作者:
Tingting Xuan;Jize Yan;Junhua Wang;Wenwen Kong;Aimin Chang - 通讯作者:
Aimin Chang
Nonlinear Generation of THz Vortex Beams with Tunable Orbital Angular Momentum in Si Microdisks
硅微盘中具有可调谐轨道角动量的太赫兹涡旋光束的非线性生成
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Hailong Pi;Fei He;Jize Yan;X. Fang - 通讯作者:
X. Fang
Jize Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
If a spin could torque: quantum force sensing with levitated nanodiamonds
如果自旋可以产生扭矩:利用悬浮纳米金刚石进行量子力传感
- 批准号:
DP240100942 - 财政年份:2024
- 资助金额:
$ 106.6万 - 项目类别:
Discovery Projects
Breakthrough for Practical Application of Magnetically Levitated Bearingless Motors Using Unequal Tooth Pitch Core
不等齿距铁芯磁悬浮无轴承电机实际应用的突破
- 批准号:
23H01367 - 财政年份:2023
- 资助金额:
$ 106.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of dynamics of complex fluid droplet levitated on high temperature surface and their development into process intensification
阐明高温表面悬浮复杂液滴的动力学及其发展过程强化
- 批准号:
23K13592 - 财政年份:2023
- 资助金额:
$ 106.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamics of ultrasonically levitated droplet and their applications to medicine
超声悬浮液滴动力学及其在医学中的应用
- 批准号:
23H01365 - 财政年份:2023
- 资助金额:
$ 106.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
PhD Studentship in Experimental Levitated Quantum Optomechanics
实验悬浮量子光力学博士生
- 批准号:
2869813 - 财政年份:2023
- 资助金额:
$ 106.6万 - 项目类别:
Studentship
Quantum Control of Gravity with Levitated Mechanics
利用悬浮力学对重力进行量子控制
- 批准号:
10032223 - 财政年份:2022
- 资助金额:
$ 106.6万 - 项目类别:
EU-Funded
Quantum Control of Gravity with Levitated Mechanics
利用悬浮力学对重力进行量子控制
- 批准号:
10032229 - 财政年份:2022
- 资助金额:
$ 106.6万 - 项目类别:
EU-Funded
Photoinitiated Chemistry in Single Levitated Aerosol Droplets using Cavity Ring-Down Spectroscopy
使用腔衰荡光谱法在单悬浮气溶胶液滴中进行光引发化学
- 批准号:
2745230 - 财政年份:2022
- 资助金额:
$ 106.6万 - 项目类别:
Studentship
PM: Precision Searches for Physics Beyond the Standard Model Using Optically Levitated Mcrospheres
PM:使用光学悬浮微球精确搜索超出标准模型的物理现象
- 批准号:
2109329 - 财政年份:2022
- 资助金额:
$ 106.6万 - 项目类别:
Standard Grant
Fundamental science and technology with levitated cavity optomechanics
悬浮腔光力学基础科学技术
- 批准号:
EP/W029626/1 - 财政年份:2022
- 资助金额:
$ 106.6万 - 项目类别:
Research Grant