Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
基本信息
- 批准号:EP/V002325/1
- 负责人:
- 金额:$ 50.43万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When we begin to study mathematics, we learn that the operation of multiplication on numbers satisfies some basic rules. One of these rules, known as associativity, says that for any three numbers a, b and c, we get the same result if we multiply a and b and then multiply the result by c or if we multiply a by the result of multiplying b and c. This leads to the abstract algebraic notion of a monoid, which is a set (in this case the set of natural numbers) equipped with a binary operation (in this case multiplication) that is associative and has a unit (in this case the number 1). If we continue to study mathematics, we encounter a new kind of multiplication, no longer on numbers but on sets, which is known as Cartesian product. Given two sets A and B, their Cartesian product is the set A x B whose elements are the ordered pairs (a, b), where a is an element of A and b is an element of B. Pictorially, the Cartesian product of two sets is a grid with coordinates given by the elements of the two sets. This operation satisfies some rules, analogous to those for the multiplication of numbers, but a little more subtle. For example, if we are given three sets A, B and C, then the set A x (B x C) is isomorphic (rather than equal) to the set (A x B) x C. Here, being isomorphic means that we they are essentially the same by means of a one-to-one correspondence between the elements A x (B x C) and those of (A x B) x C. This construction leads to the notion of a monoidal category, which amounts to a collection of objects and maps between them (in this case the collection of all sets and functions between them) equipped with a multiplication (in this case the Cartesian product) that is associative and has a unit (in this case the one-element set) up to isomorphism. Monoidal categories, introduced in the '60s, have been extremely important in several areas of mathematics (including logic, algebra, and topology) and theoretical computer science. In logic and theoretical computer science, they connect to linear logic, in which one keeps track of the resources necessary to prove a statement. This project is about the next step in this sequence of abstract notions of multiplication, which is given by the notion of a monoidal bicategory. In a bicategory, we have not only objects and maps but also 2-maps, which can be thought of as "maps between maps" and allow us to capture how different maps relate to each other. In a monoidal bicategory, we have a way of multiplying their objects, maps and 2-maps, subject to complex axioms. Monoidal bicategories, introduced in the '90s, have potential for applications even greater than that of monoidal categories, as they allow us to keep track of even more information. We seek to realise this potential by advancing the theory of monoidal bicategories. We will prove fundamental theorems about them, develop new connections to linear logic and theoretical computer science and investigate examples that are of interest in algebra and topology. Our work connects to algebra via an important research programme known as "categorification", which is concerned with replacing set-based structures (like monoids) with category-based structures (like monoidal categories) in order to obtain more subtle invariants. Our work links to topology via the notion of an operad, which is a flexible tool used to describe algebraic structures in which axioms do not hold as equalities, but rather up to weak forms of isomorphism. Overall, this project will bring the theory of monoidal bicategories to a new level and promote interdisciplinary research within mathematics and with theoretical computer science.
当我们开始学习数学时,我们知道数字的乘法运算满足一些基本规则。这些规则之一,被称为结合性,说任何三个数字,b和c,我们得到了相同的结果,如果我们把a和b,然后将结果乘以c或如果我们乘的结果乘以b和c。这导致了抽象代数独异点的概念,这是一组(在本例中自然数的集合)配备一个二元运算乘法(在本例中),联想,一个单位(在这种情况下,数量1)。如果我们继续学习数学,我们会遇到一种新的乘法,不再是数字上的乘法,而是集合上的乘法,它被称为笛卡尔积。给定两个集合A和B,它们的笛卡尔积是集合A x B,其元素是有序对(A, B),其中A是A的一个元素,B是B的一个元素。形象地说,两个集合的笛卡尔积是一个坐标由这两个集合的元素给出的网格。这个操作满足一些规则,类似于数字乘法的规则,但更微妙一些。例如,如果我们给定三个集合A, B和C,那么集合A x (B x C)与集合(A x B) x C同构(而不是相等)。这里,同构意味着我们通过元素A x (B x C)和元素(A x B) x C之间的一一对应,它们本质上是相同的。这种构造导致了一元范畴的概念,它相当于一个对象的集合和它们之间的映射(在这种情况下是所有集合和它们之间的函数的集合),配备了一个乘法(在这种情况下是笛卡尔积),这个乘法是结合的,并且有一个单位(在这种情况下是单元素集合)达到同构。在60年代引入的一元范畴在数学(包括逻辑学、代数和拓扑学)和理论计算机科学的几个领域中发挥了极其重要的作用。在逻辑和理论计算机科学中,它们与线性逻辑有关,在线性逻辑中,人们跟踪证明一个陈述所需的资源。这个项目是关于乘法的抽象概念序列的下一步,这是由一元双范畴的概念给出的。在二元分类中,我们不仅有对象和地图,还有2-地图,这可以被认为是“地图之间的地图”,并允许我们捕捉不同地图之间的关系。在一元双范畴中,我们有一种方法来乘它们的对象,映射和2-映射,服从复杂公理。20世纪90年代引入的单类双分类,比单类分类有更大的应用潜力,因为它们允许我们跟踪更多的信息。我们试图通过推进单一性双范畴理论来实现这一潜力。我们将证明关于它们的基本定理,发展与线性逻辑和理论计算机科学的新联系,并研究代数和拓扑中感兴趣的例子。我们的工作通过一个被称为“分类”的重要研究项目与代数联系起来,该项目涉及用基于类别的结构(如一元类别)取代基于集合的结构(如一元类别),以获得更微妙的不变量。我们的工作通过操作符的概念与拓扑学联系起来,操作符是一种灵活的工具,用于描述代数结构,其中公理不作为等式,而是弱形式的同构。总的来说,这个项目将把一元双范畴理论提升到一个新的水平,并促进数学和理论计算机科学的跨学科研究。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Constructive Kan-Quillen Model Structure: Two New Proofs
构造性 Kan-Quillen 模型结构:两个新证明
- DOI:10.1093/qmath/haab057
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gambino N
- 通讯作者:Gambino N
The effective model structure and -groupoid objects
有效的模型结构和-groupoid对象
- DOI:10.1017/fms.2022.13
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gambino N
- 通讯作者:Gambino N
Monoidal Kleisli Bicategories and the Arithmetic Product of Coloured Symmetric Sequences
幺半 Kleisli 双范畴与有色对称序列的算术积
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gambino, N.
- 通讯作者:Gambino, N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola Gambino其他文献
Kripke-Joyal forcing for type theory and uniform fibrations
- DOI:
10.1007/s00029-024-00962-2 - 发表时间:
2024-07-31 - 期刊:
- 影响因子:1.200
- 作者:
Steve Awodey;Nicola Gambino;Sina Hazratpour - 通讯作者:
Sina Hazratpour
Nicola Gambino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola Gambino', 18)}}的其他基金
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
- 批准号:
EP/V002325/2 - 财政年份:2022
- 资助金额:
$ 50.43万 - 项目类别:
Research Grant
Homotopy Type Theory: Programming and Verification
同伦类型理论:编程与验证
- 批准号:
EP/M01729X/1 - 财政年份:2015
- 资助金额:
$ 50.43万 - 项目类别:
Research Grant
相似海外基金
Linear logic, finiteness spaces and bicategories
线性逻辑、有限空间和二分类
- 批准号:
RGPIN-2022-03900 - 财政年份:2022
- 资助金额:
$ 50.43万 - 项目类别:
Discovery Grants Program - Individual
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
- 批准号:
EP/V002325/2 - 财政年份:2022
- 资助金额:
$ 50.43万 - 项目类别:
Research Grant
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
- 批准号:
EP/V002309/1 - 财政年份:2021
- 资助金额:
$ 50.43万 - 项目类别:
Research Grant