Linear logic, finiteness spaces and bicategories
线性逻辑、有限空间和二分类
基本信息
- 批准号:RGPIN-2022-03900
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I work in a branch of mathematics known as category theory. The algebra of category theory can be used to reveal profound relationships between seemingly quite disparate mathematical structures. A category is (typically) a class of mathematical structures (objects) and structure-preserving functions between them (arrows). A functor allows one to map one category to another. This simple idea can yield surprisingly deep results and consistently has done so since the creation of category theory in 1945. More specifically, I work in categorical logic, which in recent years has been quite an active field of mathematics. My colleagues and I take fundamental principles of logic and apply them to other areas of mathematics using category theory. One can form a category for which the objects are formulas in a given logic and the arrows are deductive proofs of those formulas. The specific logic I primarily use is linear logic. Linear logic, defined by Jean-Yves Girard, is a logic with a resource-sensitive inference rule structure. It has been of fundamental importance in computer science where one is interested in optimal use of time and resources in performing a calculation. It has also been of great value in understanding some of the more abstract approaches to quantum mechanics. There is a specific model of linear logic due to Thomas Ehrhard called the category of finiteness spaces. In addition to being a rich model of linear logic which has sufficient structure to model the many connectives of that logic, it has a strong computational property as well. When applying finiteness spaces in a specific way in certain computational settings, the summations that would a priori be infinite and hence either fail to exist or be difficult to compute become finite. This idea, which was developed by myself and various coauthors, has already led to a number of exciting results. My primary research will be to continue applying this idea to more complex settings. One area for which I suspect this idea will yield strong results is in the algebraic approach to enumerative combinatorics. Many of the strongest results in this field have followed from Rota's abstract approach to Mobius inversion. Mobius inversion originally arose in number theory as a relation between arithmetic functions, but Rota's generalization applies much more broadly. In this setting, summations must be proven to be finite. We have already shown that some of the basic examples of Mobius inversion fit into our finiteness spaces framework, but there is a great deal more work to be done. Finally, there is a more complex version of the notion of category called a bicategory. In this definition, we allow not just objects and arrows, but higher-order arrows that go between arrows. The algebra of this idea is quite daunting, but there are a great many important applications. Finiteness spaces have already been shown to yield new examples of bicategories, and I intend to explore this idea further.
我研究的是一个叫做范畴论的数学分支。范畴论的代数可以用来揭示看似完全不同的数学结构之间的深刻关系。范畴(通常)是一类数学结构(对象)和它们之间保持结构的函数(箭头)。函子允许将一个类别映射到另一个类别。这个简单的想法可以产生令人惊讶的深刻结果,并且自1945年范畴论创立以来一直如此。更具体地说,我研究的是近年来相当活跃的数学领域——范畴逻辑。我和我的同事将逻辑的基本原理运用到范畴论的其他数学领域。人们可以形成一个范畴,其中对象是给定逻辑中的公式,箭头是这些公式的演绎证明。我主要使用的逻辑是线性逻辑。线性逻辑是由Jean-Yves Girard定义的一种具有资源敏感推理规则结构的逻辑。在计算机科学中,当人们对执行计算时时间和资源的最佳利用感兴趣时,它具有重要的基础意义。它在理解量子力学的一些更抽象的方法方面也有很大的价值。线性逻辑有一个特殊的模型是由Thomas Ehrhard提出的,叫做有限空间的范畴。它不仅是一个丰富的线性逻辑模型,具有足够的结构来模拟该逻辑的许多连接词,而且还具有很强的计算性。当在特定的计算环境中以特定的方式应用有限空间时,先验的和是无限的,因此要么不存在,要么难以计算,变成有限的。这个想法是由我和其他合作者提出的,已经产生了许多令人兴奋的结果。我的主要研究将是继续把这个想法应用到更复杂的环境中。我怀疑这个想法将产生强有力结果的一个领域是枚举组合学的代数方法。这个领域的许多最有力的结果都是从罗塔对莫比乌斯反演的抽象方法中得到的。莫比乌斯反转最初作为算术函数之间的关系出现在数论中,但罗塔的推广应用得更广泛。在这种情况下,必须证明求和是有限的。我们已经证明了莫比乌斯反演的一些基本例子适合我们的有限空间框架,但还有很多工作要做。最后,范畴概念还有一个更复杂的版本,叫做双范畴。在这个定义中,我们不仅允许对象和箭头,还允许在箭头之间的高阶箭头。这个想法的代数是相当令人生畏的,但有很多重要的应用。有限空间已经被证明可以产生双范畴的新例子,我打算进一步探索这个想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Blute, Richard其他文献
Blute, Richard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Blute, Richard', 18)}}的其他基金
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
- 批准号:
RGPIN-2016-05593 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
- 批准号:
RGPIN-2016-05593 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
- 批准号:
RGPIN-2016-05593 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
- 批准号:
RGPIN-2016-05593 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
- 批准号:
RGPIN-2016-05593 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
- 批准号:
RGPIN-2016-05593 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear logic and monoidal categories
线性逻辑和幺半群类别
- 批准号:
155810-2011 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear logic and monoidal categories
线性逻辑和幺半群类别
- 批准号:
155810-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear logic and monoidal categories
线性逻辑和幺半群类别
- 批准号:
155810-2011 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Linear logic and monoidal categories
线性逻辑和幺半群类别
- 批准号:
155810-2011 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Conference: Southeastern Logic Symposium
会议:东南逻辑研讨会
- 批准号:
2401437 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
- 批准号:
2327247 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Research Grant
Travel: Student Travel Support for Logic Mentoring Workshops 2024
旅行:2024 年逻辑辅导研讨会的学生旅行支持
- 批准号:
2408942 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant