Stoichiometric rare-earth crystals for novel integrated quantum memories
用于新型集成量子存储器的化学计量稀土晶体
基本信息
- 批准号:EP/V002902/1
- 负责人:
- 金额:$ 48.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum information science is the field of research that studies the information present in a quantum system. A number of new technological applications can be envisaged thanks to exquisitely quantum phenomena. While classical information encoding relies on bits, which can be either 0s and 1s, the quantum bits (or qubits) are associated to the state of quantum objects, e.g. single atoms, single spins, or single photons. Because of the quantum superposition principle, the qubits can then be 0s, 1s, or coherent superposition of both, thus giving access to an exceptionally richer alphabet. Quantum information science also exploits quantum entanglement, i.e. strong correlation between quantum objects, as a resource for fast and secure quantum communication protocols.In view of realising networks for quantum communication, quantum memories are fundamental devices as they act as interfaces between the photons, used as information carriers, and atoms, exploited for information storage and processing. To be useful in quantum networks, the quantum memories must fulfil specific requirements, as on-demand read-out, high efficiency and fidelity, long storage time, and multimodality. While atomic gases enabled the first remarkable quantum storage experiments, solid-state systems also offer interesting perspectives.Among these, the rare-earth doped crystals recently emerged as attractive candidates because they are ensembles of optically active ions naturally trapped in inert media, which do not require external trapping fields and ultra-high vacuum chambers. They have already featured performances equalising or overcoming those of trapped atoms or cold atomic ensembles in terms of efficiency and storage times. These crystals exhibit transitions both in the optical and in the radio- and micro-wave range, thus they could serve as photonic or microwave memories, but also as interfaces between optical and microwave frequencies, thus opening the way to hybrid systems employing superconducting devices.Despite their very promising performances and the milestone experiments realised in the last decade, a unique rare-earth doped crystal that fulfils all the requirements of an ideal photonic quantum memory does not yet exist.This project exactly tackles this problem and aims at developing a novel platform for telecom-compatible integrated quantum devices, containing solid-state quantum memories with unprecedented functionalities. The central idea is to employ not rare-earth doped crystals but stoichiometric crystals, i.e. where the rare-earth ions fully substitute one element of the crystal matrix, with the two-fold aim of increasing the absorption of light and narrowing the inhomogeneous linewidth of the electronic transitions, thanks to a lower local mechanical stress.The challenges addressed are:- the optimisation of the coherence properties of bulk crystals that will enable the implementation of quantum storage protocols, never demonstrated in these kind of materials; - the exploration of confined environment, i.e. laser written waveguides, for the realisation of integrated quantum memories.We expect the waveguide fabrication to facilitate the realisation of fibre-coupled devices and the efficient manipulation of the atomic transitions by means of electric fields, and to boost the interaction strength between the light and the rare-earth ions. This might give access to the storage of telecom light exploiting optical transitions that in diluted bulk samples would be too weak. Therefore, the proposed platform might permit the simultaneous demonstration of efficient, long-lived and multiplexed storage devices, which are also compatible with existing telecom fibre network. Such quantum memories would outperform the existing quantum storage devices, and their demonstration would open new avenues for the use of solid-state technologies for real quantum information applications.
量子信息科学是研究量子系统中存在的信息的研究领域。许多新的技术应用可以设想感谢精致的量子现象。虽然经典信息编码依赖于比特,可以是0和1,但量子比特(或量子比特)与量子对象的状态相关联,例如单原子,单自旋或单光子。由于量子叠加原理,量子比特可以是0、1或两者的相干叠加,从而可以获得异常丰富的字母表。量子信息科学还利用量子纠缠,即量子对象之间的强相关性,作为快速和安全的量子通信协议的资源。考虑到实现量子通信网络,量子存储器是基本设备,因为它们充当作为信息载体的光子和用于信息存储和处理的原子之间的接口。为了在量子网络中发挥作用,量子存储器必须满足特定的要求,如按需读出,高效率和保真度,长存储时间和多模态。虽然原子气体使第一个引人注目的量子存储实验成为可能,但固态系统也提供了有趣的前景。其中,稀土掺杂晶体最近成为有吸引力的候选者,因为它们是自然捕获在惰性介质中的光学活性离子的集合体,不需要外部捕获场和超高真空室。在效率和存储时间方面,它们的性能已经达到或超过了被困原子或冷原子系综的性能。这些晶体在光学和无线电和微波范围内都表现出跃迁,因此它们可以作为光子或微波存储器,也可以作为光学和微波频率之间的接口,从而为使用超导器件的混合系统开辟了道路。尽管它们非常有前途的性能和过去十年实现的里程碑式实验,目前还没有一种独特的稀土掺杂晶体能够满足理想的光子量子存储器的所有要求。本项目正是针对这一问题,旨在开发一种新型的电信兼容集成量子器件平台,包含了前所未有的固态量子存储器其核心思想是不使用稀土掺杂晶体,而是采用化学计量晶体,即稀土离子完全取代晶体基质中的一种元素,其双重目的是增加光的吸收和缩小电子跃迁的不均匀线宽,这要归功于较低的局部机械应力。- 优化大块晶体的相干特性,这将使量子存储协议的实现成为可能,这在这些材料中从未得到证明;- 探索受限环境,即激光写入波导,以实现集成量子存储器。我们期望波导的制备有助于实现光纤耦合器件和利用电场有效地操纵原子跃迁,并提高光与稀土离子之间的相互作用强度。这可能会利用在稀释的大体积样品中太弱的光学跃迁来存储电信光。因此,拟议的平台可能允许同时演示高效、长寿命和多路复用的存储设备,这些设备也与现有的电信光纤网络兼容。这种量子存储器的性能将超过现有的量子存储设备,它们的演示将为固态技术用于真实的量子信息应用开辟新的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margherita Mazzera其他文献
Synthesis of high purity, stoichiometric controlled, TeO<sub>2</sub> powders
- DOI:
10.1016/j.matchemphys.2012.01.097 - 发表时间:
2012-04-16 - 期刊:
- 影响因子:
- 作者:
Jean-Nicolas Beaudry;Serge Grenier;Salim Amrate;Margherita Mazzera;Andrea Zappettini - 通讯作者:
Andrea Zappettini
Margherita Mazzera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margherita Mazzera', 18)}}的其他基金
An advanced Platform for INtegrated Quantum photonics devices (PINQ)
集成量子光子器件的先进平台 (PINQ)
- 批准号:
EP/Y003837/1 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Fellowship
相似国自然基金
Rare Metals(稀有金属(英文版))
- 批准号:51224002
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
精神分裂症遗传易感性及发病机理研究
- 批准号:81130022
- 批准年份:2011
- 资助金额:270.0 万元
- 项目类别:重点项目
新型多齿多联氮杂环氮氧化物多氨基多羧基类稀土发光配合物及其在免疫分析中的应用
- 批准号:20761002
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The Rare Earth Potential of the Gascoyne Region of Western Australia
西澳大利亚加斯科因地区的稀土潜力
- 批准号:
LP230100173 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Linkage Projects
SBIR Phase I: Sustainable Rare Earth Element Production from Coal Combustion Byproducts
SBIR 第一阶段:利用煤炭燃烧副产品可持续生产稀土元素
- 批准号:
2335379 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Standard Grant
SUstainable EuroPean Rare Earth Elements production value chain from priMary Ores
来自原矿的可持续欧洲稀土元素生产价值链
- 批准号:
10091569 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
EU-Funded
CAREER: Magnetically Integrated Electric Drive with Rare-Earth-Free Motors
职业:采用无稀土电机的磁集成电驱动器
- 批准号:
2338755 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Continuing Grant
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
- 批准号:
2419026 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Continuing Grant
Unlocking Rare Earth Elements from the Earth Crust
从地壳中释放稀土元素
- 批准号:
DE240100582 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Discovery Early Career Researcher Award
HARMONY: Holistic Approach to enhance the Recyclability of rare-earth permanent Magnets Obtained from aNY waste stream
HARMONY:提高从废物流中获得的稀土永磁体可回收性的整体方法
- 批准号:
10094315 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
EU-Funded
Bioengineering technologies for harvesting rare earth elements from waste
从废物中回收稀土元素的生物工程技术
- 批准号:
IM240100006 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Mid-Career Industry Fellowships
Mine to Magnets – Securing a Supply of Rare Earth Elements from Volcanic Tuffs for UK Magnet Manufacture
从矿山到磁铁 — 确保从火山凝灰岩中为英国磁铁制造商提供稀土元素
- 批准号:
10078460 - 财政年份:2023
- 资助金额:
$ 48.32万 - 项目类别:
Feasibility Studies
ReREE: Establishing feasibility of a novel process to recover rare earth elements from mining tailings for re-entry into a UK supply chain.
ReREE:建立一种从尾矿中回收稀土元素以重新进入英国供应链的新工艺的可行性。
- 批准号:
10082225 - 财政年份:2023
- 资助金额:
$ 48.32万 - 项目类别:
Feasibility Studies