Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
基本信息
- 批准号:2419026
- 负责人:
- 金额:$ 33.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThe ever-increasing demand for higher computing power and data storage while reducing power consumption and carbon footprint calls for new materials and computing paradigms. This need is accentuated by the fact that after decades of aggressive miniaturization, electronic devices are currently reaching the end of the road for traditional materials as we “run out of atoms”. Two-dimensional (2D) materials, a relatively new class of materials consisting of few-atom-thick sheets, provide a platform to address these challenges. Particularly interesting are 2D transition metal carbides, known as MXenes, composed of two to four atomic layers of transition metals separated by an atomic layer of carbon. MXenes are studied for various applications, including energy storage and generation, blocking electromagnetic waves, and antenna. Despite significant progress, room temperature magnetism, important for quantum computation, computer memories, and spintronics, has remained elusive. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professor Babak Anasori at Indiana University Purdue University Indianapolis and Professor Alejandro Strachan at Purdue University and their research groups will design and fabricate novel 2D MXenes that contain rare-earth elements, such as neodymium and gadolinium, and develop a fundamental understanding of how such elements can be used to control the electronic, magnetic, and optical properties of these materials. Computational modeling is used to guide the experimental design of these new materials and reduce the number of experiments to the most promising candidates. The team hypothesizes that the use of rare-earth elements in MXenes can lead to the first room-temperature 2D magnets. To accelerate innovation, all experimental and theoretical results produced and models developed will be made accessible for the researchers and educators for online computing. The microscopic images of nanomaterials and 2D materials have been used in many nanoart visualizations, such as NanoArtography, to promote STEM. The nanoart images will be integrated into local nanoscience outreach activities, such as Purdue’s NanoDays, to motivate art-enthusiastic children to have a chance to learn about the science and engineering behind nanoart images.TECHNICAL SUMMARY2D transition metal carbide MXenes have become one of the largest 2D material families over the past decade. MXenes have metallic electrical conductivities, are hydrophilic, and capable of intercalating a host of ions and organic molecules, leading to outstanding performance in applications such as energy storage, electromagnetic interference (EMI) shielding, wireless communications, catalysis, and biomedicine. Double-transition metal MXenes are a subfamily of MXenes that enable significant tunability in properties by changing the MXenes transition metal compositions. The research, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, aims to design, synthesize, and characterize a new family of 2D double-transition metal carbides: rare-earth (RE) f-element 2D MXenes opening the possibility of magnetic properties. This will be accomplished via a synergistic combination of theory and experiments. The overarching goal of this project is to develop a fundamental understanding of how different rare-earth elements can be incorporated into MXenes and use it to control the electronic, optical, and magnetic properties of these novel phases. The limiting factor hindering f-element MXenes is their synthesis that requires the design of novel f-element MAX phase precursors among the large compositional space. This project uses high-throughput first principles and thermodynamic calculations to identify stable precursors and their MXenes and use data science tools to guide experimental efforts. Rare-earth f-element MXenes can have radically different properties that have never been measured in regular MXenes and are absent in other 2D and bulk materials. Rare-earth MXenes can have potential applications from EMI shielding, optoelectronics, and catalysis to quantum computation, spintronics, and magnetoelectronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结在降低能耗和碳足迹的同时,对更高的计算能力和数据存储的不断增长的需求呼唤新的材料和计算模式。在经历了几十年的激进小型化之后,电子设备目前正走到传统材料的尽头,因为我们的原子已经用完了,这一事实突显了这种需求。二维(2D)材料是由几个原子厚度的薄片组成的一种相对较新的材料类别,它为应对这些挑战提供了一个平台。特别有趣的是被称为MXenes的2D过渡金属碳化物,它由两到四个原子层的过渡金属组成,中间隔着一个原子层的碳。MXenes被研究用于各种应用,包括储能和发电、阻挡电磁波和天线。尽管取得了重大进展,但对量子计算、计算机存储器和自旋电子学至关重要的室温磁性仍然难以捉摸。在材料研究部固态和材料化学计划的支持下,印第安纳大学普渡大学印第安纳波利斯分校的Babak Anasori教授和普渡大学的Alejandro Strachan教授及其研究小组将设计和制造新型的含有稀土元素(如Nd3+和Gd2+)的二维MXen,并对如何使用这些元素来控制这些材料的电子、磁性和光学性质有一个基本的了解。计算模型被用来指导这些新材料的实验设计,并将实验数量减少到最有希望的候选材料。该团队假设,在MXenes中使用稀土元素可以制造出第一个室温2D磁体。为了加快创新,所有产生的实验和理论结果以及开发的模型将向研究人员和教育工作者开放,用于在线计算。纳米材料和二维材料的显微图像已经被用于许多纳米艺术的可视化,如纳米血管成像,以促进STEM。纳米艺术图像将被整合到当地的纳米科学推广活动中,如普渡的NanoDays,以激励热爱艺术的孩子有机会了解纳米艺术图像背后的科学和工程。TECHNICAL SUMMARY2D过渡金属碳化物MXenes在过去十年中已成为最大的2D材料家族之一。MXenes具有金属导电性、亲水性,能够嵌入大量离子和有机分子,在储能、电磁干扰(EMI)屏蔽、无线通信、催化和生物医学等应用中具有优异的性能。双过渡金属MXenes是MXenes的一个子族,通过改变MXenes过渡金属组成,实现了性能的显著可调。这项研究得到材料研究部固态和材料化学计划的支持,旨在设计、合成和表征一种新的2D双过渡金属碳化物家族:稀土(RE)f元素2D MXenes,为实现磁性提供了可能性。这将通过理论和实验的协同结合来实现。这个项目的首要目标是对不同的稀土元素如何融入MXenes有一个基本的了解,并用它来控制这些新相的电子、光学和磁性。阻碍f-元素MXenes合成的限制因素是它们的合成,这就需要在大的组成空间中设计新的f-元素Max相前驱体。该项目使用高通量第一性原理和热力学计算来确定稳定的前体及其MXen,并使用数据科学工具来指导实验工作。稀土f元素MXenes可能具有完全不同的性质,这些性质在常规MXenes中从未被测量过,在其他2D和块状材料中也没有。稀土MXenes可能具有从电磁干扰屏蔽、光电子学和催化到量子计算、自旋电子学和磁电子学的潜在应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Babak Anasori其他文献
Accelerating 2D materials discovery
加速二维材料发现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:56.9
- 作者:
Anupma Thakur;Babak Anasori - 通讯作者:
Babak Anasori
Alkali cation stabilization of defects in 2D MXenes at ambient and elevated temperatures
二维 MXenes 中缺陷在环境温度和高温下的碱金属阳离子稳定化
- DOI:
10.1038/s41467-024-50713-2 - 发表时间:
2024-07-28 - 期刊:
- 影响因子:15.700
- 作者:
Brian C. Wyatt;Matthew G. Boebinger;Zachary D. Hood;Shiba Adhikari;Paweł Piotr Michałowski;Srinivasa Kartik Nemani;Murali Gopal Muraleedharan;Annabelle Bedford;Wyatt J. Highland;Paul R. C. Kent;Raymond R. Unocic;Babak Anasori - 通讯作者:
Babak Anasori
Understanding and supporting the needs of early-career materials scientists
- DOI:
10.1557/mrs.2020.292 - 发表时间:
2020-12-10 - 期刊:
- 影响因子:4.900
- 作者:
Thomas G. Folland;Mayra R.S. Castro;Isabel Gessner;Maria A. Philip;Babak Anasori - 通讯作者:
Babak Anasori
Environmentally stable nanoscale superlubricity of multi-layered Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene
- DOI:
10.1016/j.carbon.2023.118284 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
James Wait;Graham Josephson;Brian C. Wyatt;Babak Anasori;Arzu Çolak - 通讯作者:
Arzu Çolak
Solid-lubrication performance of Tisub3/subCsub2/subTsubemx/em/sub - Effect of tribo-chemistry and exfoliation
tisub3/subcsub2/subtsubemx/em/sub-底层化学和去角质效应的固体润滑性能
- DOI:
10.1016/j.mtnano.2024.100464 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:8.200
- 作者:
Andreas Rosenkranz;Bo Wang;Dario Zambrano;Javier Marqués Henríquez;Jose Y. Aguilar-Hurtado;Edoardo Marquis;Paolo Restuccia;Brian C. Wyatt;M. Clelia Righi;Babak Anasori - 通讯作者:
Babak Anasori
Babak Anasori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Babak Anasori', 18)}}的其他基金
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
- 批准号:
2124478 - 财政年份:2021
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
相似国自然基金
协同治理视角下城市更新与区域能源统筹规划理论机制与实践路径研究
- 批准号:2025JJ60334
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
城市针灸理论下老旧小区韧性更新与智慧服务协同模式研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于无人驾驶车辆的时空约束无人集群系统协同控制理论与方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多元工业固废协同固化多源异质废弃淤泥机制与调控理论研究
- 批准号:JCZRYB202500814
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于协同理论的医联体内外患者转诊机制研究
- 批准号:2025HP69
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于混沌理论与边缘计算的山地城市交通信号协同优化研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型配电系统微电网集群时空动态聚合理论及分布式协同优化策略研究
- 批准号:MS25E070007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
重楼皂苷与硒的协同积累机制研究
- 批准号:JCZRLH202500965
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于跨专业协作核心能力理论的器官移植个案管理师培养方案构建及实证研究
- 批准号:GDHLYJYM202410
- 批准年份:2025
- 资助金额:1.0 万元
- 项目类别:省市级项目
高压直流换流器运行状态感知与控保协
同基础理论与关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327011 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304207 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant