Probabilistic and Topological methods in Real Algebraic Geometry and Computational Complexity
实代数几何和计算复杂性中的概率和拓扑方法
基本信息
- 批准号:EP/V003542/1
- 负责人:
- 金额:$ 38.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is concerned with the study of the zeros of polynomials (called varieties). Besides being prominent in pure mathematics, it has applications in a plethora of areas such as physics, computational geometry, and machine learning. This proposal aims to study topological properties of certain kinds of varieties, with a view toward applications in incidence combinatorics and computational complexity theory.Our first direction is the topological study of random polynomials. Studying random polynomials represents a shift in algebraic geometry - instead of worst-case analysis, which, for example, asks for the largest possible number of points in an intersection of curves, randomness gives an average-case understanding, thus providing a more realistic view. Via Erdos' astonishing 'probabilistic method', one can obtain deterministic results by introducing randomness into a question that apriori had nothing to do with randomness. We focus on a probability distribution on the space of homogeneous polynomials, which is an actively studied probability distribution with strong algebro-geometric significance.Specifically, we are interested in bounds on the topological complexity, as measured by Betti numbers, of random varieties restricted to sets in o-minimal geometry. O-minimal geometry is a framework in which sets (called definable sets) more general than varieties are allowed. The field of o-minimal incidence geometry, which involves combinatorial questions about definable sets, is badly in need of a polynomial partitioning theorem - a tool which has been a panacea in traditional incidence geometry. However, it has proved difficult because the worst-case topological complexity of definable sets restricted to varieties can be "bad".We propose to study the average-case complexity of definable sets restricted to random varieties instead. By doing so, we hope to demonstrate that topologically "bad" polynomials are unusual (we have already proved this for certain definable sets). Thus, if the measure of polynomials suitable for partitioning is large enough, we will have proved the existence of a partitioning polynomial, with "good" topological complexity, via the probabilistic method. This will provide a tremendous boost to o-minimal incidence geometry.Our second direction is algebro-topological questions with applications in computational complexity theory. Computational complexity theory is a mathematical area that classifies problems according to the resources required to solve them. The most important open question in the field is the exceedingly difficult P vs NP problem. There has been a recent impetus towards the problem, under the Geometric Complexity Theory (GCT) program, which involves casting related problems in algebraic language. The hope is that advanced tools in the fertile areas of algebraic geometry and representation theory will allow us to make progress on the problem.The central objective of the GCT program is to separate certain spaces called orbit closures. While that is obviously a lofty aim, our goal is to compute the topology of these orbit closures. Computing the topology helps in obtaining a coarse understanding of the geometry of the objects involved. Also, it is well known that obtaining quantitative bounds on the topology of a space helps in understanding the fundamental limitations of computational procedures that operate on the space.We shall also study the notion of Ulrich complexity, which quantifies the 'complexity' of polynomials in a different way. While it is conveniently defined using commutative-algebraic notions, and is evidently easier to work with, little is understood about it in general. We shall investigate the average Ulrich complexity of Kostlan polynomials. It is known that obtaining lower bounds on the Ulrich complexity of polynomials could potentially have implications on an important conjecture in commutative algebra, as well as the P vs NP problem.
代数几何是研究多项式的零点(称为簇)。除了在纯数学中突出之外,它在物理学,计算几何和机器学习等众多领域都有应用。本文的主要目的是研究某些簇的拓扑性质,以期在关联组合学和计算复杂性理论中得到应用。我们的第一个方向是随机多项式的拓扑研究。研究随机多项式代表了代数几何的转变-而不是最坏情况下的分析,例如,要求在曲线相交处的点的最大可能数量,随机性给出了平均情况的理解,从而提供了更现实的观点。通过Erdos令人惊讶的“概率方法”,人们可以通过将随机性引入先验与随机性无关的问题中来获得确定性结果。我们关注齐次多项式空间上的概率分布,这是一个积极研究的概率分布,具有很强的代数几何意义。具体地说,我们感兴趣的是限制在o-极小几何集合上的随机簇的拓扑复杂性的界,用Betti数来度量。O-极小几何是一个框架,其中允许比变种更一般的集合(称为可定义集合)。o-极小关联几何领域涉及可定义集合的组合问题,迫切需要多项式分割定理--这是传统关联几何中的灵丹妙药。然而,它已被证明是困难的,因为最坏情况下的拓扑复杂性限制品种的可定义集可以是“坏”的,我们建议研究的平均情况下的复杂性限制随机品种。通过这样做,我们希望证明拓扑“坏”多项式是不寻常的(我们已经证明了某些可定义集)。因此,如果适合于划分的多项式的测度足够大,我们将通过概率方法证明具有“良好”拓扑复杂性的划分多项式的存在性。我们的第二个方向是代数拓扑问题及其在计算复杂性理论中的应用。计算复杂性理论是一个数学领域,它根据解决问题所需的资源对问题进行分类。这个领域最重要的开放问题是极其困难的P vs NP问题。最近在几何复杂性理论(GCT)计划下,对这个问题有了一个推动力,该计划涉及用代数语言铸造相关问题。希望在代数几何和表示论的肥沃领域的先进工具将使我们能够在这个问题上取得进展。GCT计划的中心目标是分离某些称为轨道闭包的空间。虽然这显然是一个崇高的目标,但我们的目标是计算这些轨道闭合的拓扑结构。计算拓扑有助于粗略了解所涉及对象的几何形状。此外,众所周知,获得空间拓扑的定量边界有助于理解在空间上操作的计算过程的基本限制。我们还将研究乌尔里希复杂性的概念,它以不同的方式量化多项式的“复杂性”。虽然它是方便地定义使用交换代数的概念,显然是更容易工作,很少有人了解它的一般。我们将研究Kostlan多项式的平均Ulrich复杂度。众所周知,获得多项式的乌尔里希复杂度的下界可能会对交换代数中的一个重要猜想以及P vs NP问题产生潜在的影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Betti numbers of random hypersurface arrangements
随机超曲面排列的贝蒂数
- DOI:10.1112/jlms.12658
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Basu, Saugata;Lerario, Antonio;Natarajan, Abhiram
- 通讯作者:Natarajan, Abhiram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhiram Natarajan其他文献
Spam Detection Over Call Transcript Using Deep Learning
使用深度学习通过通话记录检测垃圾邮件
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Abhiram Natarajan;Anirudh Kannan;Varun Belagali;Vaibhavi N. Pai;R. Shettar;P. Ghuli - 通讯作者:
P. Ghuli
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Abhiram Natarajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
考虑增材制造因素的拉胀复合材料拓扑
结构多尺度优化设计方法
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
考虑疲劳损伤约束的结构等几何拓扑优化方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
拓扑一致性驱动的异质图多粒度表示学习方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于接触模型的软体机械手多目标水平集拓扑优化理论与方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多粒度拓扑表征与博弈论调控的医学图像域泛化方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
车齿工艺齿面成形机理及其复杂拓扑修形方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无穷亏格极小曲面的构造
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Krig ing模型的层级结构多目标拓扑
优化方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向通信拓扑重构的智能网联车队分布式预
测控制方法研究
- 批准号:Q24F030062
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
拓扑界面处不同类型局域态的调控与应用研
究
- 批准号:Q24A040030
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327892 - 财政年份:2024
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327893 - 财政年份:2024
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
- 批准号:
2882199 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Studentship
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Topological Methods for Learning to Steer Self-Organised Growth
学习引导自组织增长的拓扑方法
- 批准号:
EP/X017753/1 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Research Grant
DMS/NIGMS 1: Topological Dynamics Models of Protein Function
DMS/NIGMS 1:蛋白质功能的拓扑动力学模型
- 批准号:
10794436 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10885376 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Phase transitions, criticality and non-trivial topological states in non-equilibrium driven-dissipative systems using analytical methods and tensor ne
使用分析方法和张量 ne 的非平衡驱动耗散系统中的相变、临界性和非平凡拓扑态
- 批准号:
2731618 - 财政年份:2022
- 资助金额:
$ 38.22万 - 项目类别:
Studentship