DMS/NIGMS 1: Topological Dynamics Models of Protein Function
DMS/NIGMS 1:蛋白质功能的拓扑动力学模型
基本信息
- 批准号:10794436
- 负责人:
- 金额:$ 19.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmino AcidsBiologicalBiologyBiomedical EngineeringDataDiseaseEvolutionGeometryGrainHealthHumanKnowledgeMathematicsMeasuresMethodsMicroscopicModelingMolecularMolecular ConformationMutationNational Institute of General Medical SciencesPhysicsPositioning AttributePropertyProtein AnalysisProtein DynamicsProtein EngineeringProteinsResearchResearch PersonnelSiteStructureSystemTestingViralWorkdesigndrug discoveryfightingfuture pandemicinnovationmathematical methodsmolecular assembly/self assemblymutation screeningnovelnovel therapeuticsprotein foldingprotein functionprotein structure
项目摘要
It is now well accepted that structured governed dynamics modulate function, yet we still don’t know how a
few changes (e.g., mutations) in sequence modify dynamics to alter function. Understanding this interplay is
a key step to engineering proteins with desired function to address disease, and viral evolution to fight with
endemics or future pandemics, as well as many other bioengineering applications. Despite the work of many
researchers, the connection between sequence, structure and dynamics remains elusive. This is partly
because there is no powerful methods that can accurately quantify each amino-acid position’s contribution
to structure and dynamics. We propose to fill this gap by using an innovative, interdisciplinary method based
on mathematical topology and physics based protein dynamics modeling. The guiding hypothesis is that the
topological landscape of proteins governs conformational dynamics and that it can be modified with sitespecific mutations. To test this hypothesis, we will create the mathematical framework upon which the local
and global topology of proteins and conformational dynamics can be rigorously associated and the evolution
of the topological landscape can be quantified. This work is particularly timely for two reasons: (1)
conformational dynamics have established a connection between structure and function and evolution at the
proteotome scale and (2) methods from mathematical topology have shown evidence of being able to
characterize protein structure.
This research advances knowledge in mathematics and biology and breaks existing barriers in: (1) topology
and geometry, (2) quantitative characterizations of protein structure, (3) connecting microscopic effects to
the macroscopic properties of proteins and (4) providing a novel framework that enables not only to uncover
the molecular mechanism of protein function and evolution based on fundamental mathematical and physical
concepts, but also enables to design novel proteins with desired function. This is achieved by (1) creating
novel measures of topological complexity and a mathematical topological framework for characterizing multiscale protein structure, by (2) coarse-grained modeling and dynamical analysis of proteins and (3) by
combining the two to establish the connection between conformational dynamics and the topological
landscape of proteins. This integrated novel framework will be tested on different protein systems with
available deep scanning mutational experimental data. The successful completion of this work could lead to
a breakthrough that would enable to predict and modulate protein function based on structural dynamics.
现在人们普遍认为,结构化的支配动力学调节功能,但我们仍然不知道如何
一些变化(例如,突变)改变动态以改变功能。理解这种相互作用是
一个关键的一步,工程蛋白质与所需的功能,以解决疾病,和病毒的演变,以打击
地方病或未来的流行病,以及许多其他生物工程应用。尽管许多人的工作
然而,研究人员发现,序列、结构和动力学之间的联系仍然难以捉摸。这部分是
因为没有有效的方法可以精确地量化每个氨基酸位置的贡献
to structure结构and dynamics动态.我们建议通过使用创新的跨学科方法来填补这一空白,
基于数学拓扑学和物理学的蛋白质动力学建模。指导性假设是,
蛋白质的拓扑景观支配着构象动力学,它可以被位点修饰,特定的突变为了验证这一假设,我们将创建一个数学框架,
蛋白质的全局拓扑结构和构象动力学可以严格关联,
可以被量化。这项工作特别及时,原因有二:(1)
构象动力学已经建立了结构和功能之间的联系,
蛋白质组规模和(2)数学拓扑学的方法已经显示出能够
表征蛋白质结构。
这项研究推进了数学和生物学的知识,并打破了现有的障碍:(1)拓扑学
(2)蛋白质结构的定量表征,(3)将微观效应与
蛋白质的宏观性质和(4)提供一个新的框架,不仅能够揭示
蛋白质功能和进化的分子机制,基于基本的数学和物理
概念,而且还能够设计具有所需功能的新型蛋白质。这是通过(1)创建
拓扑复杂性的新措施和数学拓扑框架表征多规模蛋白质结构,通过(2)粗粒度建模和蛋白质的动态分析,以及(3)通过
将两者结合起来,建立构象动力学和拓扑结构之间的联系,
蛋白质景观这种整合的新框架将在不同的蛋白质系统上进行测试,
现有的深度扫描突变实验数据。这项工作的顺利完成可能会导致
这是一个突破,可以根据结构动力学预测和调节蛋白质功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleni Panagiotou其他文献
Eleni Panagiotou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别: