ADRELO: Advancing Resilience in Low Income Housing Using Climate-Change Science and Big Data Analytics

ADRELO:利用气候变化科学和大数据分析提高低收入住房的抵御能力

基本信息

  • 批准号:
    EP/V004867/1
  • 负责人:
  • 金额:
    $ 79.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The project aims at enhancing the resilience of low-income communities living in disaster prone areas. The focus is on low-lying coastal zones that have a high risks of droughts and floods in selected parts of East Africa, Brazil and North America. It develops the geographic and socio-economic knowledge of persons living in slum and riverbed areas by gathering georeferenced data on infrastructures and information on the natural heritage of project sites. The project team will also investigate technology adoption barriers and diffusion drivers through designing and prototyping an affordable, disaster-resilient, low-income housing system that use sustainable locally-resourced materials. The development of urban spaces is a function of geographic location, economic history, urban development pattern, and therefore governance will have a bearing on resilience. Still, given that development (or lack thereof) of an urban center is an outcome of existing social, economic, and political inequities political inequities; policy packages for disaster preparedness that do not consider the unique circumstances of vulnerable populations can inadvertently cause harm to low- income households. Furthermore, policy packages will include environmental sustainability and public health considerations. The research will also contribute to accurate modelling of climate and extreme weather events at spatiotemporal level to increase the understanding of climate scientists while empowering policy makers in disaster related decision-making. Machine Learning and Big Data Analytics will be used for climate modelling and to identify optimal disaster resilient-housing urban design and planning policy packages considering projected climate change- related extreme weather scenarios between the current time and 2050. Whilst Big Climate Data is amenable to long-term climate prediction, data for localized and seasonal predictions is still uncertain and sparse. Machine Learning has potential to handle this uncertainty and data sparsity as other applications have demonstrated that it can work with either big data or sparse data.
该项目旨在提高生活在灾害易发地区的低收入社区的抗灾能力。重点是东非、巴西和北美某些地区干旱和洪水风险高的低洼沿海地区。它通过收集关于基础设施的地理参考数据和关于项目地点自然遗产的信息,发展贫民窟和河床地区居民的地理和社会经济知识。该项目团队还将通过设计和原型设计一个负担得起的,具有抗灾能力的低收入住房系统,使用可持续的当地资源材料,调查技术采用障碍和扩散驱动因素。城市空间的发展是地理位置、经济历史、城市发展模式的函数,因此治理将对复原力产生影响。尽管如此,考虑到城市中心的发展(或缺乏)是现有社会、经济和政治不平等的结果;不考虑弱势群体独特情况的备灾政策可能会无意中对低收入家庭造成伤害。此外,一揽子政策将包括环境可持续性和公共卫生方面的考虑。该研究还将有助于在时空层面上对气候和极端天气事件进行准确建模,以提高气候科学家的理解,同时增强决策者在灾害相关决策方面的能力。机器学习和大数据分析将用于气候建模,并确定最佳的防灾住房城市设计和规划政策包,考虑到当前和2050年之间与气候变化相关的极端天气情景。虽然大气候数据适用于长期气候预测,但用于局部和季节性预测的数据仍然不确定且稀少。机器学习有潜力处理这种不确定性和数据稀疏性,因为其他应用程序已经证明它可以处理大数据或稀疏数据。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Transdisciplinary Framework for AI-driven Disaster Risk Reduction for Low-income Housing Communities in Kenya
肯尼亚低收入住房社区人工智能驱动的减少灾害风险的跨学科框架
  • DOI:
    10.1109/smc52423.2021.9658957
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Triboan D
  • 通讯作者:
    Triboan D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suleiman Yerima其他文献

Performance Evaluation and Resource Management of Hierarchical MACRO-/MICRO Cellular Networks using MOSEL-2
  • DOI:
    10.1007/s11277-007-9350-8
  • 发表时间:
    2007-09-06
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Aymen I. Zreikat;Suleiman Yerima;Khalid Al-Begain
  • 通讯作者:
    Khalid Al-Begain

Suleiman Yerima的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
  • 批准号:
    AH/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Research Grant
Advancing mEasures to Reduce aviatiOn imPact on cLimate and enhAnce resilieNce to climate-changE (AEROPLANE)
推进措施减少航空对气候的影响并增强对气候变化的适应能力(飞机)
  • 批准号:
    10076559
  • 财政年份:
    2023
  • 资助金额:
    $ 79.79万
  • 项目类别:
    EU-Funded
NSF Engines Development Award: Advancing food security and climate resilience (MS)
NSF 引擎发展奖:促进粮食安全和气候适应能力 (MS)
  • 批准号:
    2305618
  • 财政年份:
    2023
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Cooperative Agreement
NSF Engines Development Award: Advancing energy and resilience technologies in the Permian Basin (TX, NM)
NSF 发动机开发奖:推进二叠纪盆地(德克萨斯州、新墨西哥州)的能源和弹性技术
  • 批准号:
    2303637
  • 财政年份:
    2023
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Cooperative Agreement
CAREER: CAS- Climate: Advancing Water Sustainability and Economic Resilience through Research and Education: An Integrated Systems Approach
职业:CAS-气候:通过研究和教育促进水的可持续性和经济弹性:综合系统方法
  • 批准号:
    2144169
  • 财政年份:
    2022
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Continuing Grant
Advancing Health System Leadership Capacity for Psychological Health and Organizational Resilience during the COVID-19 Pandemic and Beyond
提高卫生系统在 COVID-19 大流行期间及之后的心理健康和组织复原力的领导能力
  • 批准号:
    473340
  • 财政年份:
    2022
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Operating Grants
Connecting Water Resilience and Climate Resilience Policy Discourses: advancing advocacy practice and development theories
连接水资源抵御能力和气候抵御能力政策论述:推进倡导实践和发展理论
  • 批准号:
    ES/W007185/1
  • 财政年份:
    2021
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Fellowship
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
  • 批准号:
    2134148
  • 财政年份:
    2021
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
  • 批准号:
    2134223
  • 财政年份:
    2021
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Continuing Grant
Belmont Forum Collaborative Research: Advancing Resilience in Low Income Housing Using Climate-Change Science and Big Data Analytics
贝尔蒙特论坛合作研究:利用气候变化科学和大数据分析提高低收入住房的抵御能力
  • 批准号:
    2019754
  • 财政年份:
    2021
  • 资助金额:
    $ 79.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了