UK Floating Offshore Wind Turbine Test Facility (UKFOWTT)
英国浮动海上风力发电机测试设施(UKFOWTT)
基本信息
- 批准号:EP/V007726/1
- 负责人:
- 金额:$ 135.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The UK presently has the largest installed capacity of offshore wind, accounting for 36% of global capacity in 2017. The offshore wind industry contributed 9.8% of the UK's power in the 3rd quarter of 2019. In the 2019 Offshore Wind Sector Deal, the sector committed to building up to 30 GW of offshore wind by 2030, with an ambition of increasing exports fivefold to £2.6bn. The Committee on Climate Change has recommended an installed capacity of 75 GW by 2050. Nearly all offshore wind turbines installed to date have been mounted on fixed bottom support structures located in water depths up to 60 m. Given the limited availability of suitable sites at such water depths, Floating Offshore Wind Turbines (FOWT) will become increasingly important over the next decade to achieve the Offshore Wind Sector Deal goals and to help achieve the UK target of net zero greenhouse gas emissions by 2050. The Sector Deal highlights the need for government to develop frameworks to support the advancement of technologies such as FOWT.Physical modelling is a critical tool for the development of a floating offshore wind turbine and is recommended in most development guidelines. This is especially true at early stages of the development of new concept with a technology readiness level (TRL) between 1 and 3. Testing model devices at scale in the controlled environment of a laboratory has many advantages. These include the proof (or otherwise) of novel design concepts, the ability to test in systematically changing conditions and the ability to test in conditions which have low occurrence probabilities (i.e. extreme events). Quantitative measurements of motions and loads on scaled FOWT models can be made with much greater ease and accuracy then at full scale at sea. Qualitative observations are far easier to observe as well. If done correctly these measurements and observations can lead to the evolution of device designs and concepts and reduce the chance of costly failure; if and when devices are eventually deployed at sea.The University of Plymouth COAST laboratory (www.plymouth.ac.uk/coast-laboratory) is a state-of-the-art research facility for the study of wave and current interaction with offshore and coastal structures using scaled physical modelling. It houses the Ocean Basin, a 35 m x 15.5 m tank with a raisable floor that can enable testing at water depths between 0.5 and 3 m. This project will establish the UKFOWTT - UK Floating Offshore Wind Turbine Test facility within the Ocean Basin. In addition to the wave and current generation that COAST can presently deliver, UKFOWTT will add wind generation to COAST. This will consist of a bank of axial fans, mounted on a gantry spanning the tank width and have the ability to generate winds up to 10 m/s, model gusting and have a controllable wind profile. The generator will be moveable vertically from just at the water's surface to approximately 1 m above. It will be rotatable +/- 30 degrees relative to the basin, enabling the influence of wave/current/wind/model alignment to be investigated. The primary purpose of UKFOWTT is to enable both fundamental and applied research in topics related to Floating Offshore Wind. This will be a unique facility within the UK, enabling systematic physical modelling experiments with wind, wave and currents simultaneously. Data collected from physical modelling can improve understanding of the underlying physics, support development of analytical theories and validate advanced numerical models. It is also a low risk method of testing new and novel concepts. UKFOWTT provides the associated instrumentation to support these studies. UKFOWTT will also support research in other sectors of Ocean and Coastal Engineering disciplines, including the Oil and Gas sector, floating wave, tidal and solar energy, autonomous vessels, launch and recovery operations and coastal defenses.
英国目前拥有最大的海上风电装机容量,占2017年全球装机容量的36%。海上风电行业在2019年第三季度占英国电力的9.8%。在2019年的海上风电行业协议中,该行业承诺到2030年建设高达30吉瓦的海上风电,其目标是将出口增加五倍,达到26亿英镑。气候变化委员会建议到2050年装机容量达到75吉瓦。迄今为止,几乎所有安装的海上风力涡轮机都安装在水深达60米的固定底部支撑结构上。鉴于在这样的水深合适的场地有限,浮动海上风力涡轮机(FOWT)将在未来十年内变得越来越重要,以实现海上风电行业交易目标,并帮助实现英国到2050年净零温室气体排放的目标。该行业协议强调了政府制定框架以支持FOWT等技术进步的必要性。物理建模是开发浮动海上风力涡轮机的关键工具,并在大多数开发指南中得到推荐。在新概念开发的早期阶段,技术准备水平(TRL)在1到3之间,情况尤其如此。在实验室的受控环境中大规模测试模型装置具有许多优点。这些包括新设计概念的证明(或其他),在系统变化条件下进行测试的能力,以及在发生概率较低的条件下进行测试的能力(即极端事件)。在比例FOWT模型上的运动和载荷的定量测量可以比在海上的全尺寸测量更容易和准确。定性观察也更容易观察。这些测量和观察如果做得正确,可以导致设备设计和概念的演变,并减少昂贵的故障的机会;如果设备最终部署在海上,普利茅斯大学海岸实验室(www.plymouth.ac.uk/coast-laboratory)是一个最先进的研究设施,用于研究波浪和水流与近海和沿海结构的相互作用,使用缩放物理模型。它容纳了Ocean Basin,这是一个35 m x 15.5 m的水槽,带有可升起的地板,可以在0.5至3 m的水深进行测试。该项目将在海盆内建立UKFOWTT - UK浮动海上风力涡轮机测试设施。除了COAST目前可以提供的波浪和电流发电外,UKFOWTT还将为COAST增加风力发电。这将包括一组轴流风扇,安装在横跨储罐宽度的龙门架上,能够产生高达10 m/s的风速,模拟阵风,并具有可控的风剖面。发电机可从水面垂直移动到水面以上约1 m处。它将相对于水池旋转+/- 30度,从而能够研究波浪/水流/风/模型对准的影响。UKFOWTT的主要目的是使基础和应用研究相关的浮式海上风电的主题。这将是英国境内的一个独特设施,能够同时进行风、波浪和水流的系统物理模拟实验。从物理建模中收集的数据可以提高对基础物理的理解,支持分析理论的发展,并验证先进的数值模型。它也是一种测试新概念和新颖概念的低风险方法。UKFOWTT提供相关的仪器来支持这些研究。UKFOWTT还将支持海洋和海岸工程学科其他领域的研究,包括石油和天然气领域,浮波,潮汐和太阳能,自主船舶,发射和回收操作以及海岸防御。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martyn Hann其他文献
Compact floating wave energy converter arrays: Inter-device mooring connectivity and performance
- DOI:
10.1016/j.apor.2021.102820 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Ben Howey;Keri M. Collins;Martyn Hann;Gregorio Iglesias;Rui P.F. Gomes;João C.C. Henriques;Luís M.C. Gato;Deborah Greaves - 通讯作者:
Deborah Greaves
Numerical modelling and PTO damping optimization of an IEA-15-MW-VolturnUS-WEC hybrid system in real sea states
实际海况下IEA - 15 - MW - VolturnUS - WEC混合系统的数值建模和动力输出(PTO)阻尼优化
- DOI:
10.1016/j.energy.2025.136693 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:9.400
- 作者:
Tianyuan Wang;Demin Li;Deborah Greaves;Martyn Hann;Kai Zhu;Yanni Li;Haoxiang Gong;Ji Tao;Feifei Cao;Hongda Shi - 通讯作者:
Hongda Shi
Experimental–numerical model comparison of a dynamic power cable for a floating offshore wind turbine
用于浮动式海上风力涡轮机的动态电力电缆的实验-数值模型比较
- DOI:
10.1016/j.oceaneng.2025.120384 - 发表时间:
2025-03-30 - 期刊:
- 影响因子:5.500
- 作者:
Anna Holcombe;Martyn Hann;Scott Brown;Shanshan Cheng;Robert Rawlinson-Smith;Rachel Nicholls-Lee;Tom Tosdevin;Emma Edwards;Kieran Monk - 通讯作者:
Kieran Monk
The effect of onshore wind on wave overtopping of a vertical sea wall
陆上风对垂直海堤波浪越顶的影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Sarah Durbridge;Martyn Hann - 通讯作者:
Martyn Hann
Modelling the hydrodynamic response of a floating offshore wind turbine – a comparative study
浮式海上风力涡轮机水动力响应建模——对比研究
- DOI:
10.1016/j.apor.2025.104441 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:4.400
- 作者:
Shimin Yu;Edward Ransley;Ling Qian;Yang Zhou;Scott Brown;Deborah Greaves;Martyn Hann;Anna Holcombe;Emma Edwards;Tom Tosdevin;Sudhir Jagdale;Qian Li;Yi Zhang;Ningbo Zhang;Shiqiang Yan;Qingwei Ma;Bonaventura Tagliafierro;Salvatore Capasso;Iván Martínez-Estévez;Malin Göteman;Javier L. Lara - 通讯作者:
Javier L. Lara
Martyn Hann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martyn Hann', 18)}}的其他基金
Extreme Loading on Floating Offshore Wind Turbines (FOWTs) under Complex Environmental Conditions
复杂环境条件下浮式海上风力发电机 (FOWT) 的极端负载
- 批准号:
EP/T004177/1 - 财政年份:2020
- 资助金额:
$ 135.94万 - 项目类别:
Research Grant
Can individual wave energy converters effectively share power take offs to reduce costs within arrays?
各个波浪能转换器能否有效共享功率输出装置以降低阵列内的成本?
- 批准号:
EP/M01956X/1 - 财政年份:2014
- 资助金额:
$ 135.94万 - 项目类别:
Research Grant
相似海外基金
Impacts of floating offshore wind infrastructure on the distribution and behaviour of fish and marine mammals: IFLOW
浮动海上风电基础设施对鱼类和海洋哺乳动物的分布和行为的影响:IFLOW
- 批准号:
2744014 - 财政年份:2026
- 资助金额:
$ 135.94万 - 项目类别:
Studentship
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
- 批准号:
2333306 - 财政年份:2024
- 资助金额:
$ 135.94万 - 项目类别:
Cooperative Agreement
Integrated wind-wave control of semi-submersible floating offshore wind turbine platforms (FOWT-Control)
半潜式浮动海上风力发电机平台的综合风浪控制(FOWT-Control)
- 批准号:
EP/W009684/1 - 财政年份:2023
- 资助金额:
$ 135.94万 - 项目类别:
Research Grant
Integrated wind-wave control of semi-submersible floating offshore wind turbine platforms (FOWT-Control)
半潜式浮动海上风力发电机平台的综合风浪控制(FOWT-Control)
- 批准号:
EP/W009854/1 - 财政年份:2023
- 资助金额:
$ 135.94万 - 项目类别:
Research Grant
Dynamics and Control of a Novel Wave-Augmented Floating Offshore Wind Turbine
新型波浪增强浮式海上风力发电机的动力学与控制
- 批准号:
2323927 - 财政年份:2023
- 资助金额:
$ 135.94万 - 项目类别:
Standard Grant
BLOW : Black sea fLoating Offshore Wind
BLOW : 黑海漂浮海上风
- 批准号:
10063692 - 财政年份:2023
- 资助金额:
$ 135.94万 - 项目类别:
EU-Funded
Marine mussel plaque-inspired anchoring systems for offshore floating structures
受海洋贻贝斑块启发的海上浮动结构锚定系统
- 批准号:
EP/X017559/1 - 财政年份:2023
- 资助金额:
$ 135.94万 - 项目类别:
Research Grant
Integrated wind-wave control of semi-submersible floating offshore wind turbine platforms (FOWT-Control)
半潜式浮动海上风力发电机平台的综合风浪控制(FOWT-Control)
- 批准号:
EP/W009692/1 - 财政年份:2023
- 资助金额:
$ 135.94万 - 项目类别:
Research Grant
WIND2DC: Medium Voltage DC Power Take Off Technologies for Floating Offshore Wind Turbine Energy Conversion and Collection Systems
WIND2DC:用于浮式海上风力发电机能量转换和收集系统的中压直流取电技术
- 批准号:
EP/X033120/1 - 财政年份:2023
- 资助金额:
$ 135.94万 - 项目类别:
Research Grant
Black Sea Floating Offshore Wind - BLOW
黑海漂浮海上风 - BLOW
- 批准号:
10059134 - 财政年份:2023
- 资助金额:
$ 135.94万 - 项目类别:
EU-Funded