Morphing-Blades: New-Concept Turbine Blades for Unsteady Load Mitigation
变形叶片:用于减轻不稳定负载的新概念涡轮叶片
基本信息
- 批准号:EP/V009443/1
- 负责人:
- 金额:$ 115.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to demonstrate at model-scale a novel technology to reduce unsteady-loading for tidal turbines, improving resilience and reliability, and decreasing the levelised cost of energy.Tidal energy is a promising renewable energy source that can contribute to providing energy security to the UK. The first and second array of tidal turbines has now been deployed in Scotland, confirming the UK as a world leader in this emerging energy sector. One of the main technical challenges of harvesting energy from tidal currents is the large load fluctuations experienced by the blades. These can result in fatigue failures of the blades and in power fluctuations at the generator that must be smoothed before power can be provided to the grid. The aim of this project is to develop a technology that cancels the unsteady loading at its source, while adding minimal complexity to the turbine to ensure high resilience and reliability of the overall system. The technology currently adopted to mitigate load fluctuations in air, such as that one employed by wind turbines and aerial vehicles, is not directly transferable to tidal turbines because of the harsh marine environment and the high hydrodynamic loads. For example, complex systems requiring hinges with bearings would be subjected to fouling and would reduce the blade reliability. To address this issue, we would consider introducing local flexibility that does not affect the key structural elements of the blade, and whose displacement can mitigate load fluctuations. The lowest loaded part of the blade is the trailing edge, and this is also where the smallest shape morphing can lead to the largest changes in the overall load. We could manufacture a blade made of the same material as a conventional rigid blade (fibreglass) but with a structural design that allows the trailing edge to bend to react to flow changes. To ensure high reliability of the system, we could exploit passive deformation without sensors and actuators. The small inertia of the part of the blade that bends would enable a prompt reaction to flow fluctuations. Our preliminary studies showed that a blade with a flexible trailing edge can theoretically mitigate more than 90% of the load fluctuations without affecting the mean power output. This project aims to verify these initial results by testing model-scale prototypes. We aim to design and manufacture two sets of 0.6 m and 1.2 m span blades to undertake fluid dynamics tests on a model-scale turbine and fatigue tests, respectively. These tests will demonstrate the efficacy, robustness, resiliency and reliability of morphing blades. The project includes key tidal and wind energy technology companies: SIMEC Atlantis Energy, Orbital Marine Power, Nautricity, Nova Innovation, Schottel Hydro, ACT Blades and Wood Group. Together with these industrial partners we aim to investigate the applicability of morphing blades to different tidal technologies, from 70 kW to 2 MW, from 4 m to 20 m diameter, and both seabed mounted and floating turbines with single and multi rotors. If proven effective for tidal turbines, we would also explore with our wind energy partners (ACT Blades and Wood Group) whether this technology is suitable to complement or replace some of the existing unsteady load mitigation technology currently adopted by wind turbines. Morphing blades could contribute to reduce fatigue loads, to increase reliability and lifetime yield, and hence to reduce the levelised cost of energy. It is envisaged that this technology could be more suitable for offshore wind turbines than onshore wind turbines because of the higher relative importance of component reliability. Overall this project aims to investigate the suitability of morphing blades to mitigate unsteady loads on tidal turbines, aiming at decreasing costs of blades and increase the energy yields, and thus decrease the overall cost of tidal energy.
该项目旨在以模型规模展示一种新技术,以减少潮汐涡轮机的不稳定负载,提高弹性和可靠性,并降低能源成本。潮汐能是一种有前途的可再生能源,有助于为英国提供能源安全。第一批和第二批潮汐涡轮机现已部署在苏格兰,证实了英国在这一新兴能源领域的世界领先地位。从潮流中获取能量的主要技术挑战之一是叶片所经历的大负载波动。这些可能导致叶片的疲劳故障和发电机处的功率波动,在可以向电网提供功率之前必须平滑该功率波动。该项目的目的是开发一种技术,在消除不稳定负载的同时,尽量减少涡轮机的复杂性,以确保整个系统的高弹性和可靠性。目前采用的减轻空气中载荷波动的技术,例如风力涡轮机和飞行器所采用的技术,由于恶劣的海洋环境和高水动力载荷,不能直接转移到潮汐涡轮机。例如,需要具有轴承的铰链的复杂系统将受到污染并且将降低叶片可靠性。为了解决这个问题,我们将考虑引入不影响叶片关键结构元件的局部柔性,并且其位移可以减轻载荷波动。叶片的最低负载部分是后缘,并且这也是最小形状变形可以导致总负载的最大变化的地方。我们可以制造一种叶片,其材料与传统的刚性叶片(玻璃钢)相同,但结构设计允许后缘弯曲以应对气流变化。为了保证系统的高可靠性,我们可以利用无传感器和执行器的被动变形。叶片弯曲部分的小惯性将能够对流动波动做出迅速反应。我们的初步研究表明,具有柔性后缘的叶片理论上可以减轻90%以上的负载波动,而不影响平均功率输出。该项目旨在通过测试模型规模的原型来验证这些初步结果。我们的目标是设计和制造两套0.6 m和1.2 m跨度的叶片,分别进行模型比例的涡轮机上的流体动力学试验和疲劳试验。这些测试将展示变形刀片的功效、稳健性、弹性和可靠性。该项目包括主要的潮汐和风能技术公司:SIMEC Atlantis Energy,Orbital Marine Power,Nautricity,Nova Innovation,Schottel Hydro,ACT Blades和Wood Group。与这些工业合作伙伴一起,我们的目标是研究变形叶片对不同潮汐技术的适用性,从70千瓦到2兆瓦,从4米到20米的直径,以及单转子和多转子的海底安装和浮动涡轮机。如果证明对潮汐涡轮机有效,我们还将与我们的风能合作伙伴(ACT Blades和Wood Group)探讨该技术是否适合补充或取代目前风力涡轮机采用的一些现有非稳定负载缓解技术。变形叶片可以有助于减少疲劳载荷,增加可靠性和寿命产率,并因此减少能量的平准化成本。据设想,该技术可能比陆上风力涡轮机更适合海上风力涡轮机,因为组件可靠性的相对重要性更高。总体而言,本项目旨在研究变形叶片减轻潮汐涡轮机上的非定常载荷的适用性,旨在降低叶片成本并增加能量产量,从而降低潮汐能的总体成本。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Morphing blades for tidal turbines: A theoretical study
潮汐涡轮机变形叶片:理论研究
- DOI:10.1016/j.renene.2021.10.085
- 发表时间:2022
- 期刊:
- 影响因子:8.7
- 作者:Pisetta G
- 通讯作者:Pisetta G
A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers
一种用于低雷诺数水下应用的低成本振荡膜
- DOI:10.3390/jmse10010077
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Arredondo-Galeana A
- 通讯作者:Arredondo-Galeana A
Unsteady load mitigation through a passive trailing-edge flap
通过被动后缘襟翼减轻不稳定载荷
- DOI:10.1016/j.jfluidstructs.2021.103352
- 发表时间:2021
- 期刊:
- 影响因子:3.6
- 作者:Arredondo-Galeana A
- 通讯作者:Arredondo-Galeana A
Model-scale experiments of passive pitch control for tidal turbines
潮汐涡轮机被动变桨控制的模型尺度实验
- DOI:10.1016/j.renene.2023.01.051
- 发表时间:2023
- 期刊:
- 影响因子:8.7
- 作者:Gambuzza S
- 通讯作者:Gambuzza S
Use of streamnormal forces within an array of tidal power harvesters.
- DOI:10.1371/journal.pone.0270578
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Viola, Ignazio Maria;Gao, Zhi;Smith, James
- 通讯作者:Smith, James
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ignazio Maria Viola其他文献
Power and thrust control by passive pitch for tidal turbines
- DOI:
10.1016/j.renene.2024.121921 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Stefano Gambuzza;Puja Sunil;Mario Felli;Anna M. Young;Riccardo Broglia;Edward D. McCarthy;Ignazio Maria Viola - 通讯作者:
Ignazio Maria Viola
Unsteady load mitigation through passive pitch
- DOI:
10.1016/j.jfluidstructs.2024.104216 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Yabin Liu;Riccardo Broglia;Anna M. Young;Edward D. McCarthy;Ignazio Maria Viola - 通讯作者:
Ignazio Maria Viola
High-blockage corrections for circular arcs at transitional Reynolds numbers
- DOI:
10.1016/j.jweia.2022.105139 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Jean-Baptiste R.G. Souppez;Ignazio Maria Viola - 通讯作者:
Ignazio Maria Viola
Ignazio Maria Viola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ignazio Maria Viola', 18)}}的其他基金
Flow control to mitigate fatigue load through the use of flexible tidal turbine blades
通过使用柔性潮汐涡轮机叶片进行流量控制以减轻疲劳载荷
- 批准号:
EP/M02038X/1 - 财政年份:2014
- 资助金额:
$ 115.93万 - 项目类别:
Research Grant
相似海外基金
Recycling Waste Wind Turbine Blades for Low-Carbon Concrete (WINDCRETE)
回收废弃风力涡轮机叶片制成低碳混凝土 (WINDCRETE)
- 批准号:
MR/X034054/1 - 财政年份:2024
- 资助金额:
$ 115.93万 - 项目类别:
Fellowship
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332276 - 财政年份:2024
- 资助金额:
$ 115.93万 - 项目类别:
Standard Grant
Sustainable and Intelligent Manufacturing of Shearing Blades.
剪切刀片的可持续和智能制造。
- 批准号:
2902612 - 财政年份:2024
- 资助金额:
$ 115.93万 - 项目类别:
Studentship
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332275 - 财政年份:2024
- 资助金额:
$ 115.93万 - 项目类别:
Standard Grant
Wind turbine blades End of Life through Open HUBs for circular materials in sustainable business models (EoLO-HUBs)
通过可持续商业模式中循环材料的开放式集线器 (EoLO-HUB) 终止风力涡轮机叶片的使用寿命
- 批准号:
10048154 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
EU-Funded
EoLO-HUBs: Wind turbine blades End of Life through Open HUBs for circular materials in sustainable business models
EoLO-HUB:通过可持续商业模式中循环材料的开放式集线器终止风力涡轮机叶片的使用寿命
- 批准号:
10055502 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
EU-Funded
Wind turbine blades End of Life through Open HUBs for circular materials in sustainable business models
通过可持续商业模式中循环材料的开放式集线器来终止风力涡轮机叶片的使用寿命
- 批准号:
10066018 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
EU-Funded
Vibration control of wind turbine blades
风力涡轮机叶片的振动控制
- 批准号:
2889703 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
Studentship
Optimisation of the Internal Structure of Wind Turbine Blades
风力发电机叶片内部结构优化
- 批准号:
2890415 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
Studentship
Study on fatigue damage mechanism of cedar wood based on continuous observation toward the application to wind turbine blades
基于连续观察的雪松木疲劳损伤机理研究及其在风力涡轮机叶片中的应用
- 批准号:
23K05345 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)