Graph decompositions via probability and designs
通过概率和设计进行图分解
基本信息
- 批准号:EP/V025953/1
- 负责人:
- 金额:$ 38.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The notion of decomposition, or splitting a larger object into smaller pieces, is ubiquitous in mathematics. Sometimes one does this to better understand the larger object, for example representing a function by a Fourier series, or factorising an integer. On the other hand, we may wish to understand which pieces can possibly partition a given larger object. With which shapes can we tile the plane? Is it possible to 'decompose' the computationally expensive operation of division into only addition, subtraction and multiplication (as in an algorithm used by a computer to divide real numbers)? This proposal seeks to investigate these problems in graphs, or networks. A graph is a collection of nodes in which some pairs are joined by edges, to represent some relationship or connection between them. More complicated relationships are encoded by hypergraphs, where more than two nodes can lie in an edge together. Graphs are used to model and describe many different systems in biology, communications and computer science and their theoretical study comes under the mathematical field of combinatorics.In the graph setting, the goal of a decomposition problem is to start with a large 'host' graph with many edges, and a collection of 'guest' graphs each with few edges, and to try to fit the guest graphs perfectly into the host graph, using each edge exactly once. This type of problem is one of the oldest in combinatorics, going back to a 1792 question of Euler. The case where each guest graph contains few nodes is by now fairly well-understood and constitutes the area of design theory. This project investigates the other end of the spectrum where guest graphs may contain a number of nodes comparable with the host graph. An example of such a question that can be expressed in the language of graphs, the recently solved Oberwolfach problem, asks for a sequence of seating plans which allow each person in a group to sit next to each other person exactly once over the course of several meals.Very recent successes in this area, including work in which I was involved, solved a number of longstanding conjectures and overcame the barriers met in previous works by novel application of tools from disciplines outside of combinatorics. I seek to build on these successes and draw from tools in probability and design theory to obtain graph decompositions. For example, an effective strategy has been to use a randomised algorithm that makes successive coin flips to choose where to put each guest edge; tools from probability are needed to analyse its evolution. Such an algorithm is very unlikely to be able to place the final pieces correctly; tools from design theory will help complete the decomposition.
分解的概念,或将一个较大的对象分成较小的部分,在数学中无处不在。有时,这样做是为了更好地理解更大的对象,例如用傅里叶级数表示函数,或对整数进行因式分解。另一方面,我们可能希望了解哪些部分可能分割一个给定的较大对象。我们可以用哪些形状来平铺平面?有没有可能把计算量很大的除法运算“分解”成加法、减法和乘法(就像计算机用来除真实的数的算法一样)?这个提议试图在图或网络中研究这些问题。一个图是一个节点的集合,其中一些对由边连接,以表示它们之间的某种关系或连接。更复杂的关系由超图编码,其中两个以上的节点可以位于同一条边。在生物学、通信和计算机科学中,图被用来建模和描述许多不同的系统,它们的理论研究属于组合数学的范畴。在图的设置中,分解问题的目标是从一个有许多边的大的“主”图和一个有很少边的“客”图的集合开始,并试图将客图完美地拟合到主图中,每边只使用一次。这种类型的问题是组合数学中最古老的问题之一,可以追溯到1792年的欧拉问题。到目前为止,每个访客图包含很少节点的情况已经相当好理解,并构成了设计理论的领域。这个项目研究了另一端的频谱,其中客户图可能包含一些节点与主机图。这样一个问题的一个例子,可以用图形的语言来表达,最近解决的Oberwolfach问题,要求一系列的座位计划,让每个人在一组坐在彼此旁边的人正好一次在几顿饭的过程中。最近在这方面的成功,包括我参与的工作,解决了一些长期存在的问题,并克服了以前的工作中遇到的障碍,通过新颖的应用工具,从学科以外的组合。我试图建立在这些成功的基础上,并从概率和设计理论的工具,以获得图形分解。例如,一个有效的策略是使用一种随机算法,通过连续抛硬币来选择将每个客人边缘放在哪里;需要概率工具来分析其演变。这样的算法不太可能正确地放置最后的部分;设计理论的工具将帮助完成分解。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact solutions to the Erdos-Rothschild problem
鄂尔多斯-罗斯柴尔德问题的精确解
- DOI:10.1017/fms.2023.117
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Pikhurko O
- 通讯作者:Pikhurko O
Stability from graph symmetrisation arguments with applications to inducibility
图对称论证的稳定性及其应用到可归纳性
- DOI:10.1112/jlms.12777
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu H
- 通讯作者:Liu H
Stability for the Erdos-Rothschild problem
鄂尔多斯-罗斯柴尔德问题的稳定性
- DOI:10.1017/fms.2023.12
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pikhurko O
- 通讯作者:Pikhurko O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Staden其他文献
The minimum number of triangles in graphs of given order and size
给定顺序和大小的图中三角形的最小数量
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hong Liu;O. Pikhurko;Katherine Staden - 通讯作者:
Katherine Staden
TO A PROBLEM OF BOLLOB´AS AND H¨AGGKVIST ON HAMILTON CYCLES IN GRAPHS
哈密尔顿循环中的BOLLOB´AS和HáGGKVIST问题
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Katherine Staden - 通讯作者:
Katherine Staden
The generalised Oberwolfach problem
广义 Oberwolfach 问题
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Peter Keevash;Katherine Staden - 通讯作者:
Katherine Staden
The robust component structure of dense regular graphs and applications
稠密正则图的稳健组件结构及应用
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
D. Kühn;A. Lo;Deryk Osthus;Katherine Staden - 通讯作者:
Katherine Staden
University of Birmingham On degree sequences forcing the square of a Hamilton cycle
伯明翰大学论强迫汉密尔顿循环平方的度数序列
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Katherine Staden;Andrew Treglown - 通讯作者:
Andrew Treglown
Katherine Staden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Forbidding Induced Subgraphs: Decompositions, Coloring and Algorithms
禁止诱导子图:分解、着色和算法
- 批准号:
2348219 - 财政年份:2024
- 资助金额:
$ 38.27万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Hypergraph Signal Processing and Networks via t-Product Decompositions
合作研究:CIF:小型:通过 t 产品分解的超图信号处理和网络
- 批准号:
2230161 - 财政年份:2023
- 资助金额:
$ 38.27万 - 项目类别:
Standard Grant
Cell decompositions of quiver Grassmannians
箭袋格拉斯曼人的细胞分解
- 批准号:
2302620 - 财政年份:2023
- 资助金额:
$ 38.27万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Hypergraph Signal Processing and Networks via t-Product Decompositions
合作研究:CIF:小型:通过 t 产品分解的超图信号处理和网络
- 批准号:
2230162 - 财政年份:2023
- 资助金额:
$ 38.27万 - 项目类别:
Standard Grant
Optimization Theories, Algorithms, and Interfeces for General Tensor Decompositions
一般张量分解的优化理论、算法和接口
- 批准号:
23H03419 - 财政年份:2023
- 资助金额:
$ 38.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Designs and cycle decompositions
设计和循环分解
- 批准号:
RGPIN-2019-04328 - 财政年份:2022
- 资助金额:
$ 38.27万 - 项目类别:
Discovery Grants Program - Individual
Structure in Designs, Coverings and Decompositions
设计、覆盖和分解的结构
- 批准号:
RGPIN-2022-03816 - 财政年份:2022
- 资助金额:
$ 38.27万 - 项目类别:
Discovery Grants Program - Individual
Cycle decompositions of graphs and eulerian properties of hypergraphs
图的循环分解和超图的欧拉性质
- 批准号:
RGPIN-2022-02994 - 财政年份:2022
- 资助金额:
$ 38.27万 - 项目类别:
Discovery Grants Program - Individual
Resolvable cycle decompositions of complete symmetric equipartite digraphs
完全对称等分有向图的可解循环分解
- 批准号:
559541-2021 - 财政年份:2022
- 资助金额:
$ 38.27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Recursive Distributed Matrix and Tensor Decompositions on Neural Engines
职业:神经引擎上的递归分布式矩阵和张量分解
- 批准号:
2146509 - 财政年份:2022
- 资助金额:
$ 38.27万 - 项目类别:
Continuing Grant














{{item.name}}会员




