Forbidding Induced Subgraphs: Decompositions, Coloring and Algorithms
禁止诱导子图:分解、着色和算法
基本信息
- 批准号:2348219
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A basic question in mathematics is: how do we measure the complexity of an object? There is also an algorithmic analogue: for which objects can we solve hard problems efficiently? Having decided on the measure, one then asks: what information about the object guarantees that it can be classified as "uncomplicated" according to the chosen measure? "Treewidth" is a well-known measure of complexity in both structural and algorithmic graph theory. Many hard problems become tractable if the input graph is known to have small treewidth. Exhibiting a particular kind of a tree decomposition is also a useful way to describe the structure of a graph. This project studies the connections between the treewidth of a given graph and its local behavior. Graduate students will be involved in the project. The PI will also continue to popularize her work, and mathematics in general, through public lectures.This project intends to bring the powerful concepts of tree structures and non-crossing separations to the study of families of graphs defined by forbidden induced subgraphs. Several aspects of this program are outlined: from the familiar idea of upper-bounding the bag size, to tree-decompositions geared toward solving optimization problems, and applying tree-structures to the study of classical problems in graph theory. Different approaches are proposed for different possible applications. Progress on any of these aspects will advance the understanding of the structure of families of graphs defined by forbidden induced subgraphs, contribute to solutions of long-standing open problems, and have significant algorithmic consequences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学中的一个基本问题是:我们如何衡量对象的复杂性?还有一个类似的算法:对于哪些对象,我们可以有效地解决难题?在确定了度量标准之后,人们接着问:关于对象的什么信息保证它可以根据所选择的度量标准被归类为“不复杂的”?“树宽”是结构和算法图论中众所周知的复杂性度量。如果已知输入图具有小的树宽,许多困难的问题变得易于处理。展示一种特殊的树分解也是描述图的结构的一种有用的方法。这个项目研究给定图的树宽和它的局部行为之间的联系。研究生将参与该项目。PI还将继续通过公开讲座推广她的工作和数学。该项目旨在将树结构和非交叉分离的强大概念引入到由禁止诱导子图定义的图族的研究中。这个程序的几个方面进行了概述:从熟悉的想法上限袋的大小,面向解决优化问题的树分解,并应用树结构的经典问题的研究图论。针对不同的可能应用提出了不同的方法。任何这些方面的进展将推进对由禁止诱导子图定义的图族结构的理解,有助于解决长期存在的开放问题,并具有重要的算法后果。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Chudnovsky其他文献
Detecting an induced net subdivision
检测诱导网络细分
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Maria Chudnovsky;Paul D. Seymour;Nicolas Trotignon - 通讯作者:
Nicolas Trotignon
LOCAL STRUCTURE IN EVEN-HOLE-FREE GRAPH OF LARGE
大偶无孔图中的局部结构
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bogdan Alecu;Maria Chudnovsky;§. Sepehrhajebi;§∥ Andsophiespirkl - 通讯作者:
§∥ Andsophiespirkl
Solution of three problems of Cornuéjols
- DOI:
10.1016/j.jctb.2007.05.004 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:
- 作者:
Maria Chudnovsky;Paul Seymour - 通讯作者:
Paul Seymour
Finding minimum clique capacity
- DOI:
10.1007/s00493-012-2891-9 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:1.000
- 作者:
Maria Chudnovsky;Sang-Il Oum;Paul Seymour - 通讯作者:
Paul Seymour
Graphs with no even holes and no sector wheels are the union of two chordal graphs
没有偶孔且没有扇形轮的图是两个弦图的并集
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tara Abrishami;Eli Berger;Maria Chudnovsky;Shira Zerbib - 通讯作者:
Shira Zerbib
Maria Chudnovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Chudnovsky', 18)}}的其他基金
DMS-EPSRC: The Power of Graph Structure
DMS-EPSRC:图结构的力量
- 批准号:
2120644 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Forbidding Induced Subgraphs: Structure and Properties
禁止诱导子图:结构和性质
- 批准号:
1763817 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
- 批准号:
1550991 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
- 批准号:
1265803 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
炎性反应中巨噬细胞激活诱导死亡(activation-induced cell death,AICD)的机理研究
- 批准号:30330260
- 批准年份:2003
- 资助金额:105.0 万元
- 项目类别:重点项目
相似海外基金
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
- 批准号:
RGPIN-2017-06673 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
DMS-EPRSC: Induced Subgraphs and Graph Structure
DMS-EPRSC:归纳子图和图结构
- 批准号:
2154169 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
- 批准号:
RGPIN-2020-03912 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
DMS-EPSRC INDUCED SUBGRAPHS AND GRAPH STRUCTURE
DMS-EPSRC 导出的子图和图结构
- 批准号:
EP/X013642/1 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Research Grant
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
- 批准号:
RGPIN-2017-06673 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
- 批准号:
RGPIN-2020-03912 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
- 批准号:
RGPIN-2020-03912 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
- 批准号:
DGECR-2020-00524 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Discovery Launch Supplement
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
- 批准号:
RGPIN-2017-06673 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
- 批准号:
RGPIN-2017-06673 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual