Plasmon-enhanced light emission from hybrid nanowires: towards electrically driven nanowire lasers

混合纳米线的等离激元增强光发射:走向电驱动纳米线激光器

基本信息

  • 批准号:
    EP/V028642/1
  • 负责人:
  • 金额:
    $ 59.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Semiconductor nanowires are important quantum systems that can emit light at a broad range of wavelengths efficiently, where quantum effects resulting from their small size enhance the emission considerably. One issue that makes working with these tiny devices very challenging is the ability to inject current into them effectively and generate light by an electric current. We intend to explore a new means of growing these nanowires using tiny droplets of liquid helium that enables us to control the structure of these nanowires with exquisite precision. We can build these systems from the bottom up, i.e., by the addition of atoms/molecules one by one to helium droplets, allowing us to produce nanowires that are extremely difficult to make by any other means. These helium droplets are collections of helium atoms which may range in size from as few as several dozen helium atoms all the way to in excess of 100 billion atoms. The droplets possess some remarkable physical properties owing to the very low temperature, 0.37 K, which makes each droplet a superfluid. Any atoms or molecules added to a helium droplet cool rapidly to this temperature because of the exceptionally high thermal conductivity of superfluid helium and the fact that excess energy can be removed rapidly from the droplet by evaporative loss of the weakly bound helium atoms. When many atoms and/or molecules are added to the droplets they can aggregate and form objects that have nanoscale dimensions. For example, very recently it has been shown that metal nanoparticles composed of a few hundred to several million atoms can be made via this route, and nanowires can be grown by adding atoms/molecules to one-dimensional quantised vortices present in large helium droplets. Furthermore, these nano-objects can be removed from the droplets by collision with a solid surface, delivering a soft-landing. These preliminary studies, several of which originated from our team, are highly significant because they pave the way for the use of helium droplets as a tool in synthetic nanoscience. The great promise offered by helium droplets is the almost unlimited combination of materials that can be added, which will aggregate into nanoparticles or nanowires with a high degree of control.With the helium droplet technology, we can produce nanowires which have a thin filament of metal at their core, clad with a range of semiconductors, or vice versa, which are very difficult to make with other synthetic methods due to the non-wetting between metals and semiconductors. These nanowires will take advantage of surface plasmons to enhance the optical emission greatly, and smooth metallic coatings during growth would enable us to contact the nanowires efficiently; hence they are ideal to develop very small lasers driven by electric currents, and ultimately can be used to construct nano-sized electro-optical devices. In this regard, the nanowires that we will explore will have significant advantages: they are standalone and moveable, allowing them to be manipulated, transported and integrated into nanophotonic circuits. We have a range of state-of-the-art lasers that we can use to investigate the optical properties of these systems where the light is collected by high-resolution microscope systems that can operate with samples cooled to temperatures as low as 4 K. We will also use e-beam and electron microscopy techniques to write contacts onto these nanowires in controlled patterns so that we can excite individual nanowires both electrically and optically, and collect and analyse their emission. Applications we envisage range from sensors, quantum light sources and photovoltaic devices to nanolasers where we can control the emission wavelength over a large range. The project aims to deliver radical advances in both fundamental nanoscience and applied nanotechnology.
半导体纳米线是一种重要的量子系统,可以有效地发射宽波长范围的光,其中由于其小尺寸而产生的量子效应大大增强了发射。使用这些微小设备非常具有挑战性的一个问题是能够有效地将电流注入其中并通过电流产生光。我们打算探索一种新的方法,使用液氦的微小液滴来生长这些纳米线,使我们能够精确地控制这些纳米线的结构。我们可以自下而上构建这些系统,即,通过将原子/分子一个接一个地添加到氦滴中,使我们能够制造出用任何其他方法都极难制造的纳米线。这些氦滴是氦原子的集合,其大小范围可以从几十个氦原子一直到超过1000亿个原子。由于温度非常低(0.37 K),液滴具有一些显著的物理性质,这使得每个液滴都是超流体。添加到氦滴中的任何原子或分子都会迅速冷却到该温度,因为超流氦的热导率异常高,并且多余的能量可以通过弱结合氦原子的蒸发损失而从液滴中迅速去除。当许多原子和/或分子被添加到液滴中时,它们可以聚集并形成具有纳米级尺寸的物体。例如,最近已经表明,由几百到几百万个原子组成的金属纳米颗粒可以通过这种途径制成,并且纳米线可以通过将原子/分子添加到存在于大氦滴中的一维量子化涡旋中来生长。此外,这些纳米物体可以通过与固体表面碰撞而从液滴中移除,从而实现软着陆。这些初步研究,其中几个来自我们的团队,是非常重要的,因为他们铺平了道路,使用氦滴作为合成纳米科学的工具。氦液滴的巨大潜力在于可以添加几乎无限的材料组合,这些材料将在高度控制下聚集成纳米颗粒或纳米线。通过氦液滴技术,我们可以生产出纳米线,其核心是一根金属细丝,包覆着一系列半导体,反之亦然,由于金属和半导体之间的非润湿性,用其它合成方法很难制备。这些纳米线将利用表面等离子体激元极大地增强光发射,并且在生长过程中光滑的金属涂层将使我们能够有效地接触纳米线;因此它们是开发由电流驱动的非常小的激光器的理想选择,并且最终可以用于构建纳米尺寸的电光器件。在这方面,我们将探索的纳米线将具有显著的优势:它们是独立的和可移动的,允许它们被操纵,运输和集成到纳米光子电路中。我们有一系列最先进的激光器,我们可以用来研究这些系统的光学特性,其中光由高分辨率显微镜系统收集,该系统可以与冷却到低至4 K的温度的样品一起工作。我们还将使用电子束和电子显微镜技术在这些纳米线上以受控的模式写入触点,这样我们就可以通过电学和光学方式激发单个纳米线,并收集和分析它们的发射。我们设想的应用范围从传感器,量子光源和光伏器件到纳米激光器,我们可以在很大范围内控制发射波长。该项目旨在在基础纳米科学和应用纳米技术方面取得根本性进展。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
1-nm linewidth room temperature single-photon source from optical microcavity-embedded CsPbI3 perovskite quantum dots
来自光学微腔嵌入 CsPbI3 钙钛矿量子点的 1 nm 线宽室温单光子源
  • DOI:
    10.21203/rs.3.rs-2174927/v1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farrow T
  • 通讯作者:
    Farrow T
Resonantly Pumped Bright-Triplet Exciton Lasing in Cesium Lead Bromide Perovskites.
  • DOI:
    10.1021/acsphotonics.1c00720
  • 发表时间:
    2021-09-15
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Ying G;Farrow T;Jana A;Shao H;Im H;Osokin V;Baek SB;Alanazi M;Karmakar S;Mukherjee M;Park Y;Taylor RA
  • 通讯作者:
    Taylor RA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Taylor其他文献

Analysis of a temperature dependent optical window for nanofluid-based spectral splitting in PV/T power generation applications
PV/T 发电应用中基于纳米流体的光谱分裂的温度相关光学窗口分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    An Wei;Li Jun;Ni Jun;Robert Taylor;Zhu Tong
  • 通讯作者:
    Zhu Tong
Operating system support for dynamic code loading in sensor networks
操作系统支持传感器网络中的动态代码加载
Baboon graft fails, but patient thrives
狒狒移植失败,但患者茁壮成长
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert Taylor
  • 通讯作者:
    Robert Taylor
Visual landmarks calibrate auditory space across eye movements
视觉地标通过眼球运动校准听觉空间
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Aagten;Martin Szinte;Robert Taylor;H. Deubel
  • 通讯作者:
    H. Deubel
Treating opioid‐induced constipation in patients taking other medications: Avoiding CYP450 drug interactions
治疗服用其他药物的患者因阿片类药物引起的便秘:避免 CYP450 药物相互作用

Robert Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Taylor', 18)}}的其他基金

Simulation Software for Modelling Quantum Light Sources
用于量子光源建模的仿真软件
  • 批准号:
    EP/R044554/1
  • 财政年份:
    2018
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Research Grant
Non-polar nitride quantum dots for application in single photon sources
用于单光子源应用的非极性氮化物量子点
  • 批准号:
    EP/M012379/1
  • 财政年份:
    2015
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Research Grant
SBIR Phase I: High Performance Single Inductor Multiple Output DC Converter
SBIR 第一阶段:高性能单电感多输出直流转换器
  • 批准号:
    1416282
  • 财政年份:
    2014
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Standard Grant
Long wavelength single photon sources and dotonic molecules
长波长单光子源和量子分子
  • 批准号:
    EP/K014978/1
  • 财政年份:
    2013
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Research Grant
SGER: Effect of Soufriere Hills Volcanic Eruptions on the Plant and Soil Environment of Montserrat
SGER:苏弗里耶尔山火山喷发对蒙特塞拉特植物和土壤环境的影响
  • 批准号:
    0441424
  • 财政年份:
    2004
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Standard Grant
Symposium on Inference for Stochastic Processes
随机过程推理研讨会
  • 批准号:
    9988121
  • 财政年份:
    2000
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Standard Grant
Dense WDM Coherent Optical Networks: Theory and Experiment
密集 WDM 相干光网络:理论与实验
  • 批准号:
    9870292
  • 财政年份:
    1998
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Computing Equipment for Function Estimation and Inference for Stochastic Processes
数学科学:随机过程函数估计和推理的计算设备
  • 批准号:
    9406979
  • 财政年份:
    1994
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Standard Grant
RIMI: Strengthening Research and Training in Environmental Science
RIMI:加强环境科学研究和培训
  • 批准号:
    9253025
  • 财政年份:
    1992
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Continuing Grant
Mixed/Hybrid Plate and Shell Elements
混合/混合板壳单元
  • 批准号:
    8921721
  • 财政年份:
    1990
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Standard Grant

相似国自然基金

噬菌体靶向肠道粪肠球菌提高帕金森病左旋多巴疗效的机制研究
  • 批准号:
    82371251
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
  • 批准号:
    10680969
  • 财政年份:
    2023
  • 资助金额:
    $ 59.12万
  • 项目类别:
High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2022
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Discovery Grants Program - Individual
High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2021
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmon-enhanced light emission from hybrid nanowires: towards electrically driven nanowire lasers
混合纳米线的等离激元增强光发射:走向电驱动纳米线激光器
  • 批准号:
    EP/V027255/1
  • 财政年份:
    2021
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Research Grant
High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2020
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmon enhanced organic light emitting diodes for laser and quantum emission
用于激光和量子发射的等离子增强有机发光二极管
  • 批准号:
    RGPIN-2015-05485
  • 财政年份:
    2019
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale device engineering and plasmon-enhanced light-matter interactions for optically accessible resistive switches
用于光学可访问电阻开关的纳米级器件工程和等离子体增强光-物质相互作用
  • 批准号:
    2274778
  • 财政年份:
    2019
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Studentship
High speed manufacturing of laser-textured surfaces for visible-light plasmon-enhanced CO2 conversion
高速制造用于可见光等离子体增强二氧化碳转换的激光纹理表面
  • 批准号:
    RGPIN-2019-05263
  • 财政年份:
    2019
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmon enhanced organic light emitting diodes for laser and quantum emission
用于激光和量子发射的等离子增强有机发光二极管
  • 批准号:
    RGPIN-2015-05485
  • 财政年份:
    2018
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmon enhanced organic light emitting diodes for laser and quantum emission
用于激光和量子发射的等离子增强有机发光二极管
  • 批准号:
    RGPIN-2015-05485
  • 财政年份:
    2017
  • 资助金额:
    $ 59.12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了