Extreme deformations of magneto- and electro-active membranes: A framework to model instabilities due to large multi-physics loads in thin structures

磁活性膜和电活性膜的极端变形:模拟薄结构中大量多物理载荷引起的不稳定性的框架

基本信息

  • 批准号:
    EP/V030833/1
  • 负责人:
  • 金额:
    $ 42.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

When structures undergo large deformation, there is an abrupt change in their structural response at the instability (or bifurcation) point. Structural instability often leads to mechanical failure and hence has been traditionally avoided in engineering design based on materials such as concrete and metal. Soft elastomers, on the other hand, can undergo large reversible deformation without failure. The bifurcation or instability phenomenon in this case can be used to our advantage in the design of actuation and energy conversion mechanisms. Magneto-rheological elastomers (MREs) and electro-active polymers (EAPs) are new types of soft smart materials that can deform in the presence of electromagnetic fields and therefore devices made using them provide multi-control mechanisms. A key limiting factor in their industry adoption is a poor understanding of instability under extreme loads due to complex nonlinear multi-physics coupling.In this project, we propose to develop an enhanced understanding of the instability phenomenon in thin electro-mechanical and magneto-mechanical structures and deliver a mathematical and computational framework to model this process. This will allow us to investigate and simulate extreme deformation in MRE and EAP membranes, thereby significantly improving the tools that inform engineering design of soft robotic actuators, sensors, deformable lenses, and wave energy generators.
当结构发生大变形时,结构在失稳(或分叉)点处的响应会发生突变。结构失稳往往导致机械故障,因此在基于混凝土和金属等材料的工程设计中传统上是避免的。另一方面,软弹性体可以进行大的可逆变形,而不会发生故障。这种情况下的分叉或失稳现象可用于驱动机构和能量转换机构的设计。磁流变弹性体(MRE)和电活性聚合物(EAP)是一种新型的软智能材料,可以在电磁场的作用下变形,因此用它们制造的器件提供了多种控制机制。其工业应用的一个关键限制因素是对由于复杂的非线性多物理耦合而导致的极端载荷下的不稳定性缺乏了解。在这个项目中,我们建议加强对薄机电和磁机械结构中的不稳定性现象的理解,并提供一个数学和计算框架来模拟这一过程。这将使我们能够研究和模拟MRE和EAP薄膜中的极端变形,从而显著改进为软机器人执行器、传感器、可变形透镜和波能发生器的工程设计提供信息的工具。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wrinkling as a mechanical instability in growing annular hyperelastic plates
A Galerkin approach for analysing coupling effects in the piezoelectric semiconducting beams
  • DOI:
    10.1016/j.euromechsol.2023.105145
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaowei Liu;Pei‐Liang Bian;Yilin Qu;Weicheng Huang;Leilei Chen;Jingbo Chen;Prashant Saxena;Tiantang Yu
  • 通讯作者:
    Zhaowei Liu;Pei‐Liang Bian;Yilin Qu;Weicheng Huang;Leilei Chen;Jingbo Chen;Prashant Saxena;Tiantang Yu
Computational instability analysis of inflated hyperelastic thin shells using subdivision surfaces
  • DOI:
    10.1007/s00466-023-02366-z
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Zhaowei Liu;A. McBride;A. Ghosh;L. Heltai;Weicheng Huang;Tiantang Yu;P. Steinmann;P. Saxena
  • 通讯作者:
    Zhaowei Liu;A. McBride;A. Ghosh;L. Heltai;Weicheng Huang;Tiantang Yu;P. Steinmann;P. Saxena
Analytical modeling of the electrical conductivity of CNT-filled polymer nanocomposites
  • DOI:
    10.1177/10812865231225483
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Masoud Ahmadi;Prashant Saxena
  • 通讯作者:
    Masoud Ahmadi;Prashant Saxena
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prashant Saxena其他文献

Routability Optimization for Industrial Designs at Sub-14nm Process Nodes Using Machine Learning
使用机器学习在 14 纳米以下工艺节点上优化工业设计的可布线性
Deformation and stability of initially stressed hyperelastic plates
初始应力超弹性板的变形与稳定性
The Management Education (MBA) Challenge a Study of Managerial Competency Needs & how Well MBA's Differentiate
  • DOI:
    10.1016/s2212-5671(14)00230-5
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Prashant Saxena;Shilpa Bendale
  • 通讯作者:
    Shilpa Bendale
Plane stress finite element modelling of arbitrary compressible hyperelastic materials
  • DOI:
    10.1007/s00707-025-04310-z
  • 发表时间:
    2025-05-30
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Masoud Ahmadi;Andrew McBride;Paul Steinmann;Prashant Saxena
  • 通讯作者:
    Prashant Saxena
On pioneering nanometer-era routing problems
关于开创性的纳米时代路由问题
  • DOI:
    10.1145/2160916.2160931
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Gao;Prashant Saxena
  • 通讯作者:
    Prashant Saxena

Prashant Saxena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
  • 批准号:
    DP240101409
  • 财政年份:
    2024
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Discovery Projects
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
  • 批准号:
    2304797
  • 财政年份:
    2023
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Standard Grant
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
  • 批准号:
    2246991
  • 财政年份:
    2023
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Standard Grant
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
  • 批准号:
    23H00480
  • 财政年份:
    2023
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of Time-Dependent Deformations Mechanisms and Development of Countermeasures in Tunnels Excavated in Swelling Ground
膨胀土中开挖隧道随时间变形机制的阐明及对策的制定
  • 批准号:
    23K04023
  • 财政年份:
    2023
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Buckly-grains: a model system for elucidating interplay of extreme deformations and reconfigurations
Buckly-grains:用于阐明极端变形和重构相互作用的模型系统
  • 批准号:
    22KF0084
  • 财政年份:
    2023
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Models for Galois deformations and Applications
职业:伽罗瓦变形模型和应用
  • 批准号:
    2237237
  • 财政年份:
    2023
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Continuing Grant
Symmetry-restored two-centre self-consistent approach to fission with arbitrary deformations, orientations, and distance of fragments
具有任意变形、方向和碎片距离的对称性恢复的两中心自洽裂变方法
  • 批准号:
    ST/W005832/1
  • 财政年份:
    2022
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Research Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Research Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    $ 42.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了