Visual Analytics for Explaining and Analysing Contact Tracing Networks
用于解释和分析接触者追踪网络的可视化分析
基本信息
- 批准号:EP/V033670/1
- 负责人:
- 金额:$ 37.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Contact tracing networks carry invaluable information for researchers to understand the spread of the virus, for policy-makers to control the COVID-19 outbreak, and for the government and the media in informing the public in rich ways. However, current data science tools fall short for the exploratory and explanatory analysis of the temporal, spatial and social aspects of these networks, and little is known on how most effectively the results of such analyses can be communicated broadly. This lack of a toolbox leads to organisations wasting resources on developing partial solutions designed without broad stakeholder engagement. To this end, this project aims to follow a user-centred approach to develop visual analytics methods for the analysis of large collections of contact tracing networks along with techniques for the communication of analysis results in transparent, comprehensive, yet engaging ways. Contact networks come with noteworthy technical and ethical challenges: inherent uncertainties due to the variation in their generation mechanisms, e.g., apps, hospital records, by volunteers; and high volumes of complex and sensitive information represented as event-based interactions with spatio-temporal facets. This project responds to these challenges through two deliverables comprising visualisation methods working simultaneously at group and individual levels while communicating the general trends in the spread:1. Visualisations aimed at experts for understanding collections of contact networks to inform public health policies and make in-depth investigations without compromising individuals' privacy.2. Visualisations for communicating analysis results with the general public for information and evidencing policy recommendations with representations having a purely explanatory emphasis.
接触者追踪网络为研究人员了解病毒的传播、政策制定者控制COVID-19疫情以及政府和媒体以丰富的方式向公众提供信息提供了宝贵的信息。然而,目前的数据科学工具不足以对这些网络的时间、空间和社会方面进行探索性和解释性分析,而且对于如何最有效地广泛传播此类分析的结果知之甚少。这种工具箱的缺乏导致组织浪费资源开发没有广泛利益相关者参与的部分解决方案。为此,该项目旨在遵循以用户为中心的方法,开发用于分析大量接触者追踪网络的可视化分析方法,同时沿着以透明、全面但引人入胜的方式交流分析结果的技术。接触网络带来了值得注意的技术和伦理挑战:由于其生成机制的变化而产生的固有不确定性,例如,志愿者的应用程序、医院记录;以及大量复杂和敏感的信息,这些信息被表示为与时空方面的基于事件的交互。该项目通过两个可交付成果来应对这些挑战,其中包括在群体和个人层面同时工作的可视化方法,同时传达传播的总体趋势:1.可视化的目的是让专家了解接触网络的集合,以告知公共卫生政策,并在不损害个人隐私的情况下进行深入调查。可视化,用于与公众交流分析结果,以获取信息,并证明政策建议,其中陈述具有纯粹的解释性重点。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards explainable community finding.
- DOI:10.1007/s41109-022-00515-6
- 发表时间:2022
- 期刊:
- 影响因子:2.2
- 作者:
- 通讯作者:
Edge-Path Bundling: A Less Ambiguous Edge Bundling Approach
边缘路径捆绑:一种不太模糊的边缘捆绑方法
- DOI:10.48550/arxiv.2108.05467
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wallinger M
- 通讯作者:Wallinger M
From Asymptomatics to Zombies: Visualization-Based Education of Disease Modeling for Children
- DOI:10.1145/3544548.3581573
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Graham Mcneill;Max Sondag;Stewart Powell;P. Asplin;C. Turkay;Faron Moller;D. Archambault
- 通讯作者:Graham Mcneill;Max Sondag;Stewart Powell;P. Asplin;C. Turkay;Faron Moller;D. Archambault
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations.
流行病学建模的可视化:挑战,解决方案,反思和建议。
- DOI:10.1098/rsta.2021.0299
- 发表时间:2022-10-03
- 期刊:
- 影响因子:5
- 作者:Dykes, Jason;Abdul-Rahman, Alfie;Archambault, Daniel;Bach, Benjamin;Borgo, Rita;Chen, Min;Enright, Jessica;Fang, Hui;Firat, Elif E.;Freeman, Euan;Gonen, Tuna;Harris, Claire;Jianu, Radu;John, Nigel W.;Khan, Saiful;Lahiff, Andrew;Laramee, Robert S.;Matthews, Louise;Mohr, Sibylle;Nguyen, Phong H.;Rahat, Alma A. M.;Reeve, Richard;Ritsos, Panagiotis D.;Roberts, Jonathan C.;Slingsby, Aidan;Swallow, Ben;Torsney-Weir, Thomas;Turkay, Cagatay;Turner, Robert;Vidal, Franck P.;Wang, Qiru;Wood, Jo;Xu, Kai
- 通讯作者:Xu, Kai
Visual Analytics of Contact Tracing Policy Simulations During an Emergency Response
- DOI:10.1111/cgf.14520
- 发表时间:2022-06
- 期刊:
- 影响因子:2.5
- 作者:Max Sondag;C. Turkay;Kai Xu;L. Matthews;S. Mohr;D. Archambault
- 通讯作者:Max Sondag;C. Turkay;Kai Xu;L. Matthews;S. Mohr;D. Archambault
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Archambault其他文献
Daniel Archambault的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Archambault', 18)}}的其他基金
Drawing and Visualisation of Dynamic Multivariate Graphs for Social Networks
社交网络动态多元图的绘制和可视化
- 批准号:
EP/N005724/1 - 财政年份:2015
- 资助金额:
$ 37.22万 - 项目类别:
Research Grant
相似海外基金
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Discovery Projects
Conference: Doctoral Consortium for the 2024 Learning Analytics & Knowledge Conference
会议:2024 年学习分析博士联盟
- 批准号:
2400421 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
- 批准号:
2339483 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Continuing Grant
STTR Phase I: Using Audio Analytics and Sensing to Enhance Broiler Chicken Welfare and Performance by Continuously Monitoring Bird Vocalizations
STTR 第一阶段:使用音频分析和传感,通过持续监测鸡的发声来提高肉鸡的福利和性能
- 批准号:
2335590 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
Home Office National Crime and Justice Lab Policy: Crime Data Analytics UKRI Policy Fellowship
内政部国家犯罪和司法实验室政策:犯罪数据分析 UKRI 政策奖学金
- 批准号:
ES/Y004930/1 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Fellowship
CellScope: A marketplace for recycling/upcycling Battery Cells from e-waste powered by traceable health analytics data
CellScope:从电子垃圾中回收/升级电池的市场,由可追踪的健康分析数据提供支持
- 批准号:
10114372 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
SME Support
CAREER: Promoting Metacognition in Visual Analytics
职业:促进视觉分析中的元认知
- 批准号:
2340539 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Continuing Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
- 批准号:
2335210 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
SBIR Phase I: CAS: DIGITAL TWIN FOR CLIMATE RESILIENCE ANALYTICS
SBIR 第一阶段:CAS:气候复原力分析的数字孪生
- 批准号:
2335269 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant














{{item.name}}会员




