Drawing and Visualisation of Dynamic Multivariate Graphs for Social Networks
社交网络动态多元图的绘制和可视化
基本信息
- 批准号:EP/N005724/1
- 负责人:
- 金额:$ 12.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Networks, or graphs, are pervasive in our modern society. A network consists of entities, or nodes, and a set of relationships between those entities, or edges. When we consider social media services (Facebook, Twitter, etc), nodes correspond to user accounts and edges would be friendships between these users. Nodes often have information associated with them, or attributes. In a social network, these attributes could be as simple as demographic data or information that a particular user has at a given time. In an intelligent infrastructure setting, where nodes and edges correspond to a road network, the level of congestion along stretches of road would be an attribute of the network. In general, networks that have attributes associated with their nodes and edges are called multivariate networks and are an emerging area of information visualisation.Multivariate networks can also be dynamic. That is, either the structure of the network itself or the attributes associated with the nodes and edges can change over time. In a social network setting, friendships are formed and are broken, evolving the network. Information that a friend might have can spread from node to node cascading through the network structure. In a city, new roadways can be built or closed, corresponding to structural changes in the network. Levels of congestion vary throughout the course of the day and therefore the attributes can change as well. Networks where the structure and/or attributes change over time are dynamic multivariate networks and understanding how they operate is critical for these applications and many others. In information visualisation, this emerging area has received much recent attention.The challenge of this work occurs when the network structure and/or the attributes change over time and we would like to visualise these changes effectively. As many networks, particularly social networks, do not have inherent spatial positions for the nodes, we are free to choose these positions. Also, we are free to choose the encodings for the attributes. However, we must do so in a way that is both computationally efficient and perceptually effective for the end user of the visualisation. In this work, we look at perceptually effective ways for drawing and visualising dynamic multivariate graphs. We work closely with research scientists at the Oxford Internet Institute to ensure impact on software that is already in use with various user communities. For this work, we are inspired by studies in psychology and perception in order to drive the design of algorithms to draw the graph and interactive methods for their visualisation. We concentrate on methods for drawing and visualising both evolving structure and evolving attributes. In order to ensure our algorithms conform to the desired perceptual criteria, we evaluate our computational processes through metric evaluations and evaluate our visualisations through user centred experimentation. By working closely with our collaborators in social networks, we ensure the work is relevant for analysing social networks.
网络或图表在我们的现代社会中无处不在。网络由实体或节点以及这些实体或边之间的一组关系组成。当我们考虑社交媒体服务(Facebook、Twitter等)时,节点对应于用户帐户,而边缘则是这些用户之间的友谊。节点通常具有与其相关联的信息或属性。在社交网络中,这些属性可以像人口统计数据或特定用户在给定时间拥有的信息一样简单。在智能基础设施环境中,节点和边缘对应于道路网络,道路沿线的拥堵程度将是网络的一个属性。一般来说,具有与其节点和边相关联的属性的网络称为多变量网络,是信息可视化的新兴领域。多变量网络也可以是动态的。也就是说,网络本身的结构或与节点和边相关联的属性可以随时间而改变。在社交网络环境中,友谊是形成的,也是破裂的,从而演变成网络。朋友可能拥有的信息可以通过网络结构从一个节点级联到另一个节点。在城市中,可以新建或关闭新的道路,这与路网的结构变化相对应。拥堵程度在一天中会有所不同,因此属性也会发生变化。结构和/或属性随时间变化的网络是动态的多变量网络,了解它们是如何运行的对这些应用和许多其他应用至关重要。在信息可视化方面,这一新兴领域最近受到了很多关注。当网络结构和/或属性随着时间的推移而发生变化时,这项工作就会面临挑战,我们希望有效地可视化这些变化。由于许多网络,特别是社交网络,没有固有的节点空间位置,我们可以自由选择这些位置。此外,我们还可以自由选择属性的编码。然而,我们必须以一种既在计算上有效又对可视化的最终用户感知有效的方式这样做。在这项工作中,我们着眼于绘制和可视化动态多变量图的感知有效的方法。我们与牛津互联网研究所的研究科学家密切合作,以确保对各种用户社区已经在使用的软件产生影响。在这项工作中,我们受到心理学和知觉研究的启发,以推动算法的设计,以绘制图表和将其可视化的交互方法。我们专注于绘制和可视化不断演变的结构和属性的方法。为了确保我们的算法符合期望的感知标准,我们通过度量评估来评估我们的计算过程,并通过以用户为中心的实验来评估我们的可视化。通过与我们在社交网络中的合作者密切合作,我们确保这项工作与分析社交网络相关。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonuniform Timeslicing of Dynamic Graphs Based on Visual Complexity
- DOI:10.1109/visual.2019.8933748
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Yong Wang;D. Archambault;Hammad Haleem;Torsten Möller;Yanhong Wu;Huamin Qu
- 通讯作者:Yong Wang;D. Archambault;Hammad Haleem;Torsten Möller;Yanhong Wu;Huamin Qu
How Ordered Is It? On the Perceptual Orderability of Visual Channels
- DOI:10.1111/cgf.12889
- 发表时间:2016-06-01
- 期刊:
- 影响因子:2.5
- 作者:Chung, David H. S.;Archambault, Daniel;Chen, Min
- 通讯作者:Chen, Min
Exploring the Limits of Complexity: A Survey of Empirical Studies on Graph Visualisation
- DOI:10.1016/j.visinf.2018.12.006
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Vahan Yoghourdjian;D. Archambault;S. Diehl;Tim Dwyer;Karsten Klein;H. Purchase;Hsiang-Yun Wu
- 通讯作者:Vahan Yoghourdjian;D. Archambault;S. Diehl;Tim Dwyer;Karsten Klein;H. Purchase;Hsiang-Yun Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Archambault其他文献
Daniel Archambault的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Archambault', 18)}}的其他基金
Visual Analytics for Explaining and Analysing Contact Tracing Networks
用于解释和分析接触者追踪网络的可视化分析
- 批准号:
EP/V033670/1 - 财政年份:2020
- 资助金额:
$ 12.23万 - 项目类别:
Research Grant
相似海外基金
Designing a bio-sensitive visualisation for saltmarsh conservation
设计用于盐沼保护的生物敏感可视化
- 批准号:
AH/Z50533X/1 - 财政年份:2024
- 资助金额:
$ 12.23万 - 项目类别:
Research Grant
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
$ 12.23万 - 项目类别:
Fellowship
Visualisation and engagement toolkit for costal erosion system
海岸侵蚀系统的可视化和参与工具包
- 批准号:
AH/X013057/1 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Research Grant
Bioprinting and advanced visualisation of novel 3D model systems
新型 3D 模型系统的生物打印和高级可视化
- 批准号:
LE230100157 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
EO4AgroClimate: VISualisation and Assessment of water quality using an Open Data Cube FOR the weStern English chAnnel - Vis4Sea.
EO4AgroClimate:使用西方英语频道 Vis4Sea 的开放数据立方体进行水质可视化和评估。
- 批准号:
ST/Y003039/1 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Research Grant
ExCALIBUR HES: Exascale Data Testbed for Simulation, Data Analysis & Visualisation
ExCALIBUR HES:用于仿真、数据分析的百亿亿次数据测试台
- 批准号:
EP/Y004051/1 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Research Grant
Inclusive Data Visualisation for Human-Centred Decision-Making
以人为本的决策的包容性数据可视化
- 批准号:
EP/X029697/1 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Research Grant
Causal Counterfactual visualisation for human causal decision making - A case study in healthcare
人类因果决策的因果反事实可视化 - 医疗保健领域的案例研究
- 批准号:
EP/X029778/1 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Research Grant
Amutri3D - revolutionising the 3D-visualisation industry by offering a more scalable, flexible and faster solution for multiple sector uses
Amutri3D - 通过为多个行业用途提供更具可扩展性、灵活且更快的解决方案,彻底改变 3D 可视化行业
- 批准号:
10061530 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Collaborative R&D
A Quantitative Network-Based Study in the Visualisation and Suppression of Illicit Drug Networks in the UK
英国非法药物网络可视化和抑制的基于定量网络的研究
- 批准号:
2889523 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Studentship














{{item.name}}会员




