Model theory of D-large fields and connections to representation theory.
D-大域的模型理论以及与表示理论的联系。
基本信息
- 批准号:EP/V03619X/1
- 负责人:
- 金额:$ 44.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to build further connections between model theory and representation theory of algebras. This is driven by a promising line of research initiated five years ago, by the PI (together with Bell, Launois, and Moosa), that exploits the geometric-stability machinery from model theory to provide a new approach to the Dixmier-Moeglin equivalence -- a program to classify irreducible representations of noetherian algebras. In more detail, this project aims at exploring further and unifying the model theory of tame fields with generic operators. We investigate the model-theoretic properties of large fields equipped with generic additive operators (denoted by D) obeying certain multiplicative and commutative rules. Our results naturally lead to the notion of D-large field, the analogue of large fields in the D-operators setting, and we explore their role in D-field arithmetic and Inverse D-Galois questions. These developments are then deployed in the representation theory of noetherian algebras. Namely, we use the model-theoretic machinery to characterize primitive ideals, which roughly classify irreducible representations, in purely topological and algebraic terms for a wide class of noetherian Hopf algebras.Model theoretic algebra (or rather, the model theory of fields with operators) studies in particular the algebraic, and also many times analytic, structure of rings equipped with commuting derivations. Classical examples are rings of smooth functions and fields of meromorphic functions (in several variables), equipped with the usual differentiation operators. Most of the differential field theory can be explored in parallel to its classical algebraic counterpart. For instance, there are differential analogues of algebraically closed, real closed, and p-adically closed fields. Furthermore, in the spirit of Galois theory for polynomial equations, a beautiful differential Galois theory for linear differential equations has been developed and used in functional transcendence questions.Representation theory, on the other hand, is one of the most influential fields of pure mathematics. Its development has been driven by challenging, yet very basic problems. In particular, one of the fundamental questions is to classify the irreducible representations of a given noetherian algebra (which is often quite difficult). A now standard approach to this problem is to study the kernels of irreducible representations -- the so-called primitive ideals. In the case of enveloping algebras of finite dimensional complex Lie-algebras, Dixmier and Moeglin proved that primitive ideals can be characterised purely algebraically and topologically. These characterisations initiated the interest in what is nowadays known as the Dixmier-Moeglin equivalence.In broad terms, this project is guided by two broad visions:(1) Derivations are simply additive operators induced by the dual numbers (a special case of a local finite algebra), we aim to unify the model theory and Galois theory of all operators with multiplicative and commutative rules induced from ANY local finite algebra (on specific classes of large fields). This includes the important case of Hasse-Schmidt derivations (on algebraically and real closed fields, for instance). (2) Exploit the above model-theoretic results (in particular, the geometric-stability tools) to tackle the classification of irreducible representations of noetherian algebras. More precisely, shed a light in the Bell-Leung conjecture stating the all finitely generated noetherian Hopf algebras of finite Gelfand-Kirillov dimension satisfy the Dixmier-Moeglin equivalence. We aim to prove this equivalence for a wide family of important cases (iterated Hopf-Ore extensions), and its Poisson-version in full generality.
该项目的目的是在模型理论和代数表示论之间建立进一步的联系。这是由 PI(与 Bell、Launois 和 Moosa 一起)五年前发起的一项有前景的研究推动的,该研究利用模型理论中的几何稳定性机制,为 Dixmier-Moeglin 等价提供了一种新方法——一种对诺特代数的不可约表示进行分类的程序。更详细地说,该项目旨在进一步探索并将驯服场的模型理论与通用算子统一起来。我们研究配备了遵守某些乘法和交换规则的通用加法算子(用 D 表示)的大域的模型理论属性。我们的结果自然引出了 D-大域的概念,即 D-算子设置中大域的类比,并且我们探讨了它们在 D-域算术和逆 D-伽罗瓦问题中的作用。这些发展随后被运用到诺特代数的表示论中。也就是说,我们使用模型理论机制来描述原始理想,这些理想以纯拓扑和代数术语对一类诺特霍普夫代数的不可约表示进行粗略分类。模型理论代数(或者更确切地说,具有算子的域模型理论)特别研究具有通勤推导的环的代数结构,并且很多时候也是解析结构。经典的例子是光滑函数环和亚纯函数域(在多个变量中),配备了常用的微分算子。大多数微分场论可以与其经典代数对应物并行地探索。例如,存在代数闭域、实闭域和 p 进闭域的微分类似物。此外,本着多项式方程伽罗瓦理论的精神,一种美丽的线性微分方程微分伽罗瓦理论已经被开发出来并用于泛函超越问题。 另一方面,表示论是纯数学中最有影响力的领域之一。它的发展是由具有挑战性但又非常基本的问题推动的。特别是,基本问题之一是对给定诺特代数的不可约表示进行分类(这通常相当困难)。现在解决这个问题的标准方法是研究不可约表示的核心——所谓的原始理想。在有限维复李代数的包络代数的情况下,Dixmier 和 Moeglin 证明了原始理想可以用纯代数和拓扑来表征。这些特征引发了人们对当今所谓的 Dixmier-Moeglin 等价的兴趣。从广义上讲,该项目以两个广泛的愿景为指导:(1)导数只是由对偶数(局部有限代数的特殊情况)导出的加法算子,我们的目标是将所有算子的模型理论和伽罗瓦理论与从任何局部有限代数(在特定的情况下)导出的乘法和交换规则统一起来。 大领域的类别)。这包括哈斯-施密特推导的重要情况(例如,在代数和实闭域上)。 (2) 利用上述模型理论结果(特别是几何稳定性工具)来解决诺特代数不可约表示的分类问题。更准确地说,阐明贝尔-梁猜想,指出有限 Gelfand-Kirillov 维数的所有有限生成的诺特霍普夫代数满足 Dixmier-Moeglin 等价。我们的目标是证明这一等价性对于一系列重要的情况(迭代的 Hopf-Ore 扩展)及其具有完全普遍性的泊松版本。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ON RANK NOT ONLY IN NSOP 1 THEORIES
排名不仅在 NSOP 1 理论中
- DOI:10.1017/jsl.2024.9
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:DOBROWOLSKI J
- 通讯作者:DOBROWOLSKI J
Differentially large fields
差分大域
- DOI:10.2140/ant.2024.18.249
- 发表时间:2024
- 期刊:
- 影响因子:1.3
- 作者:León Sánchez O
- 通讯作者:León Sánchez O
A Poisson basis theorem for symmetric algebras of infinite-dimensional Lie algebras
无限维李代数对称代数的泊松基定理
- DOI:10.4310/arkiv.2023.v61.n2.a6
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:León Sánchez O
- 通讯作者:León Sánchez O
The Amalgamation Property for automorphisms of ordered abelian groups
有序交换群自同构的合并性质
- DOI:10.48550/arxiv.2209.03944
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dobrowolski J
- 通讯作者:Dobrowolski J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omar Leon Sanchez其他文献
Omar Leon Sanchez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
Multilegged amplitudes: from CFT to Higgs production at future colliders
多足振幅:从 CFT 到未来对撞机希格斯粒子的产生
- 批准号:
23K19047 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
Investigation into the distribution of frictional strength on the plate interface and the large-thrust earthquake occurrence by seismic wave theory
地震波理论研究板块界面摩擦力分布及大推力地震发生
- 批准号:
23H01271 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
- 批准号:
2308248 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant














{{item.name}}会员




