Quantum-Enhanced Molecular Piezoresistivity
量子增强分子压阻
基本信息
- 批准号:EP/V037765/1
- 负责人:
- 金额:$ 49.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Piezoresistivity, the change in electrical resistivity (conductivity) of a material when a mechanical strain is applied, is an important effect for the development of modern sensors. Devices with piezoresistive behaviour, that can be used to detect strain, pressure, acceleration and force, are used as sensors in many applications. Many of us carry a set of them in our pockets, as the accelerometers in our smartphones that detect orientation and movement are in fact based on the piezoresistive (or piezocapacitive) effect in silicon semiconducting microstructures. Other applications include vehicle technology (e.g. force sensors responsible for deploying the airbag), construction (e.g. to monitor the performances of pre-stressed concrete in bridges), robotics (e.g. tactile perception of hands and pincers in second-generation robots), hydraulics (e.g. pressure sensors to control release valves), toys (a notable example are the Nintendo consoles that include in their controllers sets of accelerometers and dynamometers) and health technology (e.g. sensory feedback in remote surgery, "smart" wearable health monitoring and drug delivery devices). This list is by no means exhaustive, as force sensors are among the most common type of sensors. Despite the fact that the piezoresistive effect was discovered more than 150 years ago, the development of such devices remains active and topical, especially with the current, constant need for miniaturisation and reduced power consumption.I propose here to develop a new kind of piezoresistive sensors, based on molecules as active components. Some molecules undergo a conformational change (a change in the relative position of the atoms in their structure) as they are compressed or stretched, and their electrical properties (conductance / resistance) change accordingly. This behaviour arises from effect unique to the nanoscale realm, where charge flows by quantum tunnelling, and results in extremely enhanced sensitivity to very small forces. Piezoresistive phenomena will be initially investigated at the single-molecule level, by fabricating single-molecule junctions (electrical devices made of 1 molecule only) employing nanomanipulation techniques in a scanning tunnelling microscope to identify the most promising structures. Few-molecules measurements will follow using an atomic force microscope, to extract force parameters and verify their suitability to be used in functional electronic sensors. Finally, prototype devices will be prepared by sandwiching a self-assembled monolayer (a 1-molecule thick layer) of flexible molecules between two metallic films, and their electrical properties under mechanical load/stress will be assessed. From a technological point of view, the final aim of the project is to develop ultra-thin (<100 nm, 1/1000 the thickness of a human hair), precise and sensitive force sensors that could be used in the applications mentioned earlier, where reduced size and enhanced performances are required. From a scientific point of view, the project will yield unprecedentedly detailed data about the mechanical behaviour of molecules, that will have impact in fields such as catalysis and polymer degradation.
压阻率,即当施加机械应变时材料的电阻率(电导率)的变化,是现代传感器发展的重要影响。具有压阻特性的器件可用于检测应变、压力、加速度和力,在许多应用中用作传感器。我们中的许多人都在口袋里随身携带一套,因为我们智能手机中检测方向和运动的加速度计实际上是基于硅半导体微结构中的压阻(或压容)效应。其他应用包括车辆技术(例如,负责展开安全气囊的力传感器),结构(例如监测桥梁中预应力混凝土的性能)、机器人技术(例如第二代机器人的手和钳子的触觉)、液压(例如控制释放阀的压力传感器),玩具(一个值得注意的例子是任天堂游戏机,其中包括在其控制器套加速度计和测力计)和健康技术(例如远程手术中的感觉反馈、“智能”可穿戴健康监测和药物输送设备)。这个列表绝不是详尽的,因为力传感器是最常见的传感器类型之一。尽管事实上,压阻效应被发现超过150年前,这样的设备的发展仍然活跃和热门,特别是与当前,不断需要简化和降低功耗。我建议在这里开发一种新的压阻传感器,基于分子作为活性成分。一些分子在被压缩或拉伸时会发生构象变化(原子在其结构中的相对位置发生变化),其电学性质(电导/电阻)也会相应变化。这种行为源于纳米级领域特有的效应,其中电荷通过量子隧穿流动,并导致对非常小的力的灵敏度大大增强。压阻现象将首先在单分子水平上进行研究,通过在扫描隧道显微镜中采用纳米操纵技术制造单分子结(仅由1个分子制成的电气设备),以确定最有前途的结构。随后将使用原子力显微镜进行少量分子测量,以提取力参数并验证其是否适合用于功能电子传感器。最后,将通过在两个金属膜之间粘附柔性分子的自组装单层(1分子厚的层)来制备原型装置,并且将评估它们在机械负载/应力下的电性能。从技术的角度来看,该项目的最终目标是开发超薄(<100 nm,人类头发厚度的1/1000),精确和灵敏的力传感器,可用于前面提到的应用,其中需要减小尺寸和增强性能。从科学的角度来看,该项目将产生前所未有的关于分子力学行为的详细数据,这些数据将对催化和聚合物降解等领域产生影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nuclear Magnetic Resonance Chemical Shift as Probe for Single-Molecule Charge Transport
核磁共振化学位移作为单分子电荷传输的探针
- DOI:10.26434/chemrxiv-2023-z642p
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Qiao X
- 通讯作者:Qiao X
Single-Molecule Junction Formation in Deep Eutectic Solvents with Highly Effective Gate Coupling.
- DOI:10.1021/acs.jpcc.3c03129
- 发表时间:2023-07-06
- 期刊:
- 影响因子:3.7
- 作者:Qiao, Xiaohang;Vezzoli, Andrea;Smith, Shaun;Higgins, Simon J.;Davidson, Ross J.;Beeby, Andrew;Nichols, Richard J.
- 通讯作者:Nichols, Richard J.
Mechanoresistive single-molecule junctions.
机械电阻单分子结。
- DOI:10.1039/d1nr06891a
- 发表时间:2022
- 期刊:
- 影响因子:6.7
- 作者:Vezzoli A
- 通讯作者:Vezzoli A
Not So Innocent After All: Interfacial Chemistry Determines Charge-Transport Efficiency in Single-Molecule Junctions
- DOI:10.1002/anie.202302150
- 发表时间:2023-05-04
- 期刊:
- 影响因子:16.6
- 作者:Daaoub, Abdalghani;Morris, James M. F.;Sangtarash, Sara
- 通讯作者:Sangtarash, Sara
Redox-Addressable Single-Molecule Junctions Incorporating a Persistent Organic Radical.
- DOI:10.1002/anie.202116985
- 发表时间:2022-06-07
- 期刊:
- 影响因子:16.6
- 作者:Naghibi, Saman;Sangtarash, Sara;Kumar, Varshini J.;Wu, Jian-Zhong;Judd, Martyna M.;Qiao, Xiaohang;Gorenskaia, Elena;Higgins, Simon J.;Cox, Nicholas;Nichols, Richard J.;Sadeghi, Hatef;Low, Paul J.;Vezzoli, Andrea
- 通讯作者:Vezzoli, Andrea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Vezzoli其他文献
Halide adsorption influences snapback distance in Scanning Tunnelling Microscope break junctions
- DOI:
10.1016/j.elecom.2024.107821 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Chanyuan Huo;Andrea Vezzoli;Natasa Vasiljevic;Walther Schwarzacher - 通讯作者:
Walther Schwarzacher
Klaus Wandelt (Ed): Surface and Interface Science. Volume 5: Solid–Gas Interfaces I/Volume 6: Solid–Gas Interfaces II
- DOI:
10.1007/s10337-017-3398-8 - 发表时间:
2017-09-08 - 期刊:
- 影响因子:1.300
- 作者:
Andrea Vezzoli - 通讯作者:
Andrea Vezzoli
Andrea Vezzoli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Vezzoli', 18)}}的其他基金
SPUD: Single-Photon Unimolecular Devices
SPUD:单光子单分子器件
- 批准号:
EP/Y02513X/1 - 财政年份:2024
- 资助金额:
$ 49.33万 - 项目类别:
Research Grant
相似海外基金
Enhanced Circularly Polarized Luminescence of Single Molecular Layers
单分子层的增强圆偏振发光
- 批准号:
22KF0260 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
- 批准号:
10585510 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Development of Enhanced Anti-inflammatory Blood Mononuclear Cell Therapy for ARDS and Elucidation of the Molecular Mechanism
ARDS增强抗炎血液单核细胞治疗的进展及分子机制的阐明
- 批准号:
23K07659 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular Mechanisms of Plant Defense Enhanced by Aroma Glycosylation
香气糖基化增强植物防御的分子机制
- 批准号:
23H02346 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unraveling the mechanism behind enhanced herbicide selectivity by safeners through molecular cross-species analyzes of crop and weed.
通过作物和杂草的分子跨物种分析,揭示安全剂增强除草剂选择性背后的机制。
- 批准号:
23K18025 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Molecular and cellular basis of mosquito olfactory attraction to hay infusion for enhanced vector surveillance and control
蚊子对干草浸液的嗅觉吸引力的分子和细胞基础,以加强病媒监测和控制
- 批准号:
10648584 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Molecular Dynamics simulation for association/dissociation of protein-ligand and protein-DNA complexes by advanced enhanced sampling technique
通过先进的增强采样技术对蛋白质-配体和蛋白质-DNA 复合物的结合/解离进行分子动力学模拟
- 批准号:
23K13077 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enhanced ensemble method for understanding molecular assembly states of cell-penetrating peptides
用于理解细胞穿透肽分子组装状态的增强集成方法
- 批准号:
23K05714 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Subcellular investigation of molecular programs responsible for corticospinal neuron development and treatment-enhanced regeneration
负责皮质脊髓神经元发育和治疗增强再生的分子程序的亚细胞研究
- 批准号:
10751204 - 财政年份:2023
- 资助金额:
$ 49.33万 - 项目类别:
Production of molecular chaperone-enhanced bovine embryos by utilizing heat-independent HSP70 inducer
利用不依赖热的 HSP70 诱导剂生产分子伴侣增强牛胚胎
- 批准号:
22K19233 - 财政年份:2022
- 资助金额:
$ 49.33万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)