'Invisible' Solar Technologies from Bio-Inspired Optics

来自仿生光学的“隐形”太阳能技术

基本信息

  • 批准号:
    EP/V043617/1
  • 负责人:
  • 金额:
    $ 44.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Nature has optimised structures over billions of years through natural selection, a process which will forever exceed any 'trial and error' optimisation routine carried out by ourselves. Engineers can learn much from these achievements. The Cabbage white (Pieris brassicae) and Glasswing (Greta-Oto) butterflies have uniquely lightweight reflective and transparent wings which has been previously proven to be 17x lighter than current optical materials. Solar Concentrators (such as magnifying lenses designed for focusing the suns light) are a developing technology, which can utilise cheap glass or plastic optics to concentrate sunlight onto photovoltaic panels (these Concentrator photovoltaic systems are called CPV systems). These systems can reduce the amount of expensive heavily mined photovoltaic material required whilst maintaining the overall power output. CPV's can however be cumbersome, and so there lies a great opportunity to marry these disciplines of concentrator photovoltaics (optics+Solar panels) and natural lightweight structures (butterfly wing nanostructures) via biomimicry to gain significantly higher power-to-weight ratios for solar energy technology. Renewable energy, integrated into smart grids, buildings, vehicles and surrounding infrastructures, is an important pathway to reducing carbon emissions and advancing a sustainable lifestyle within society. This complex challenge demands interdisciplinary research and innovative design.This fellowship aims to manufacture novel bio-inspired optics capable of at least tripling the power-to-weight ratio of concentrator solar energy technology. The surface structure of optics has significant effects on the light redirection and absorption. Micro-structured optics and coatings have shown rewards of increased power output and reliability for CPV devices but reduced weight designs require exploring. Fresnel lenses -an already lighter truncated version of convex lenses- only became popular with the discovery of lightweight poly(methylmethacrylate) (PMMA), making them more affordable and practical. This was a breakthrough for CPV in its very early years, and encourages further breakthroughs to entail new weight reduction methods matched to specific concentrator designs, as proposed here. This will be done on a nano, micro and macro level of engineering to obtain optimal performance and ensure outputs and impact. The production of high performing lightweight CPV panels which are more discreet than current PV panels and even invisibly integrated into buildings is the ultimate objective. This fellowship outlines theoretical and experimental methods, with strong focuses on materials and manufacturing characterisation aided by industrial collaboration and exploitation to credit the wide-spread impact of this pioneering research. Interdisciplinary research such as this will provide new solutions and understanding to firstly the disciplines of solar energy, optics, manufacturing, nanotechnology and biology but also branching off to incorporate the public perceptions of energy through collaborations with artists and companies to increase the impact of this research as well as showcasing and encouraging interdisciplinary research itself.
自然界通过自然选择优化了数十亿年的结构,这一过程将永远超过我们自己进行的任何“试错”优化程序。工程师们可以从这些成就中学到很多东西。卷心菜白色(Pieris brassicae)和玻璃翅(Greta-Oto)蝴蝶具有独特的轻质反射和透明翅膀,此前已被证明比目前的光学材料轻17倍。太阳能聚光器(例如用于聚焦太阳光的放大透镜)是一种发展中的技术,它可以利用廉价的玻璃或塑料光学器件将太阳光集中到光伏板上(这些聚光器光伏系统被称为CPV系统)。这些系统可以减少所需的昂贵的大量开采的光伏材料的量,同时保持总的功率输出。然而,CPV可能是笨重的,因此有很大的机会通过仿生学将聚光器光致发光(光学+太阳能电池板)和自然轻质结构(蝴蝶翅膀纳米结构)结合起来,以获得太阳能技术的显着更高的功率重量比。可再生能源被集成到智能电网、建筑、车辆和周边基础设施中,是减少碳排放和促进社会可持续生活方式的重要途径。这一复杂的挑战需要跨学科研究和创新设计。该奖学金旨在制造新型生物启发光学器件,能够将聚光器太阳能技术的功率重量比至少增加两倍。光学器件的表面结构对光的重定向和吸收有着重要的影响。微结构光学器件和涂层已经显示出CPV器件的增加的功率输出和可靠性的回报,但是减轻重量的设计需要探索。菲涅尔透镜--一种已经更轻的凸透镜的截短版本--只是随着轻质聚甲基丙烯酸甲酯(PMMA)的发现而流行起来,使它们更实惠和实用。这是CPV在其早期的一个突破,并鼓励进一步的突破,需要新的减重方法与特定的集中器设计相匹配,如这里所提出的。这将在纳米、微观和宏观工程层面上完成,以获得最佳性能并确保产出和影响。最终目标是生产高性能轻质CPV面板,其比当前的PV面板更隐蔽,甚至无形地集成到建筑物中。该奖学金概述了理论和实验方法,重点关注工业合作和开发辅助的材料和制造特性,以表彰这项开创性研究的广泛影响。像这样的跨学科研究将提供新的解决方案和理解,首先是太阳能,光学,制造,纳米技术和生物学学科,但也通过与艺术家和公司的合作,将公众对能源的看法纳入分支,以增加这项研究的影响,并展示和鼓励跨学科研究本身。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wide-angle Anti-reflective patterns from butterfly wing scales for Enhanced PV Energy Generation
蝴蝶翅膀鳞片的广角抗反射图案可增强光伏发电
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shanks, K
  • 通讯作者:
    Shanks, K
Nanopatterned indium tin oxide as a selective coating for solar thermal applications
  • DOI:
    10.1016/j.renene.2023.04.020
  • 发表时间:
    2023-04-21
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Motamedi, Mahdi;Jia, Guobin;Taylor, Robert A.
  • 通讯作者:
    Taylor, Robert A.
Outdoor experimental validation for ultra-high concentrator photovoltaic with serpentine-based cooling system
蛇形冷却系统超高聚光光伏室外实验验证
  • DOI:
    10.1016/j.renene.2023.118926
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Cameron W
  • 通讯作者:
    Cameron W
Understanding the anti-reflective glasswing butterfly for enhanced solar concentrator optics
了解用于增强太阳能聚光器光学的抗反射玻璃翼蝴蝶
  • DOI:
    10.1117/12.2633041
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shanks K
  • 通讯作者:
    Shanks K
Effects of partial shading on thermal stress and exergetic efficiency for a high concentrator photovoltaic
局部遮蔽对高聚光光伏发电热应力和火能效率的影响
  • DOI:
    10.1016/j.energy.2023.129818
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Cameron W
  • 通讯作者:
    Cameron W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katie Shanks其他文献

Record high solar concentration ratio for strongp/stronghotovoltaics: Experimental validation for achieving effective concentration of 1200 suns
强 p/强热光伏的创纪录高太阳聚光比:实现有效 1200 倍太阳聚光的实验验证
  • DOI:
    10.1016/j.solener.2024.112427
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Mussad M. Alzahrani;Katie Shanks;Yusuf Chanchangi;William J. Cameron;Taher S. Maatallah;Tapas K. Mallick
  • 通讯作者:
    Tapas K. Mallick
Synthesis, characterization, and photocatalytic hydrogen evolution performance of neodymium iron composites: Influence of annealing temperature
  • DOI:
    10.1016/j.inoche.2023.111592
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiuru Yang;Shahad Al Barwani;Mansour Alhabradi;Manal Alruwaili;Sina Saremi-Yarahmadi;Tom Clarkson;Anurag Roy;Katie Shanks;Hong Chang;Asif Ali Tahir
  • 通讯作者:
    Asif Ali Tahir
Theoretical investigation of height and width tapered microchannel cooling systems for ultra-high concentrator photovoltaic thermal hybrids
  • DOI:
    10.1016/j.renene.2024.121208
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    William J. Cameron;Katie Shanks;Tapas K. Mallick;K. Srinivas Reddy
  • 通讯作者:
    K. Srinivas Reddy

Katie Shanks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于“夸父一号”HXI载荷和Solar Orbiter /STIX的耀斑X射线暴多视角观测及研究
  • 批准号:
    12303063
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of coating technologies to fabricate perovskite solar cells
钙钛矿太阳能电池涂层技术的开发
  • 批准号:
    2888995
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Studentship
Computational methods for analysis and optimization of solar thermal energy collection and storage technologies
太阳能热能收集和存储技术分析和优化的计算方法
  • 批准号:
    RGPIN-2017-04078
  • 财政年份:
    2022
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed maximum power point tracking and internal fault detection technologies for solar PV-powered roadways
太阳能光伏供电道路分布式最大功率点跟踪和内部故障检测技术
  • 批准号:
    558697-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Alliance Grants
Massively parallel computational methods for combined-modes heat transfer with applications to concentrated solar power technologies
组合模式传热的大规模并行计算方法及其在聚光太阳能发电技术中的应用
  • 批准号:
    RGPIN-2016-04927
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Discovery Grants Program - Individual
Printing solar cells for future technologies
为未来技术打印太阳能电池
  • 批准号:
    2596648
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Studentship
Computational methods for analysis and optimization of solar thermal energy collection and storage technologies
太阳能热能收集和存储技术分析和优化的计算方法
  • 批准号:
    RGPIN-2017-04078
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization of Grid-Tied Solar Photovoltaic Systems Using Novel Power Electronics Technologies
利用新型电力电子技术优化并网太阳能光伏系统
  • 批准号:
    545740-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Postdoctoral Fellowships
Computational methods for analysis and optimization of solar thermal energy collection and storage technologies
太阳能热能收集和存储技术分析和优化的计算方法
  • 批准号:
    RGPIN-2017-04078
  • 财政年份:
    2020
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization of Grid-Tied Solar Photovoltaic Systems Using Novel Power Electronics Technologies
利用新型电力电子技术优化并网太阳能光伏系统
  • 批准号:
    545740-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Postdoctoral Fellowships
Heat transfer in molten salts for solar thermal energy technologies
用于太阳能热能技术的熔盐传热
  • 批准号:
    552146-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 44.98万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了