Symmetries of 4-manifolds
4-流形的对称性
基本信息
- 批准号:EP/V04821X/1
- 负责人:
- 金额:$ 25.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A manifold is a topological space that is locally euclidean, that is in every small neighbourhood looks like euclidean spaceR^n, for some n. The number n is the dimension of the manifold. One of the most fundamental questions in topology is toclassify manifolds. In order to make the question more manageable, we often restrict to compact, connected manifolds;those that roughly speaking are of bounded size, and every two points has a path between them. Every compact,connected 1-dimensional manifold is equivalent, or homeomorphic, to a circle. Surfaces, or 2-dimensional manifolds, wereclassified in the 19th century. We have the orientable surfaces with some nonnegative number of holes, obtained from thesphere by adding handles, and nonorientable surfaces obtained by adding Möbius bands to the sphere instead.Remarkably, manifolds of dimension 3 have been understood rather well in the last 50 years, with important breakthroughsdue to Thurston, Perelman and Agol. On the other hand the h-cobordism theorem of Smale, exotic spheres of Kervaire-Milnor, and the surgery programme of Browder-Novikov-Sullivan-Wall, led to a likewise deep understanding of manifolds ofdimension at least 5. This work helped Smale, Milnor, Novikov, Sullivan, and Thurston win Fields medals.Manifolds of dimension 4 occupy a curious middle ground, at the confluence of high and low dimensional manifoldtopology. Many techniques from both high and low dimensional manifolds partially extend to dimension four, but thus farnever conclusively.As a result, outstanding mysteries abound. For example, the smooth Poincaré conjecture that every homotopy 4-sphere isdiffeomorphic to the 4-sphere, the Schoenflies problem that every smooth embedding of the 3-sphere in the 4-sphere isisotopic to the standard equatorial embedding remain open.On the other hand there are a wealth of techniques for studying 4-manifolds, coming from low dimensional geometric methods such as knot theory, high dimensional surgery theory, group theory and mathematical physics, as well as techniques special to dimension 4. In particular the Fields medal work of Freedman and Donaldson opened up the world of 4-manifolds.The aim of this project is to understand symmetries of 4-manifolds: a symmetry of a manifold is a self-map that preserves the structure. These are called homeomorphisms, or in the case of smooth manifolds, they are called diffeomorphisms. To avoid repeating myself, let me just discuss homeomorphisms from now on; everything I say has an analogue for diffeomorphims. The set of homeomorphisms from a manifold to itself form a group, and they also form a topological space in a natural way. This means that one can study the set of homeomorphisms from the point of view of group theory and of algebraic topology. The most basic question is to determine when two homeomorphisms are isotopic, meaning that one map can be continuously deformed until it agrees with the other map. The isotopy classes of homeomorphisms of a manifold also form a group, called the mapping class group of the manifold. Studying these groups for surfaces is both an old, beautiful topic, and the subject of significant current research. It is an exciting new area to investigate the analogous question for 4-dimensional manifolds. The principal goal of this project is to develop new machinery and techniques with which to do so, and to make new computations of 4-dimensional mapping class groups.
流形是一个局部欧氏的拓扑空间,也就是说,对于某个n,在每个小邻域中看起来都像欧氏空间R ^n。数n是流形的维数。拓扑学中最基本的问题之一是流形的分类。为了使问题更易于处理,我们经常限制到紧凑的,连通的流形;粗略地说,那些有界的大小,每两个点之间有一条路径。每一个紧致的连通的一维流形都等价于或同胚于一个圆。曲面或二维流形在世纪被重新分类。我们有定向表面与一些非负数目的洞,从theschem获得通过添加处理,和nonorientable表面获得通过添加莫比乌斯带spheriainstead. Notably,流形的3维已被理解,而在过去的50年,与重要的突破,由于瑟斯顿,佩雷尔曼和Agol。另一方面的h-协边定理的Smale,异国情调领域的Kervaire,米尔诺,和手术方案的Browder,诺维科夫-Sullivan墙,导致了同样深刻的理解流形的尺寸至少5。这项工作帮助Smale,Milnor,Novikov,Sullivan和Thurston赢得了菲尔兹奖。四维流形占据了一个奇怪的中间地带,在高、低维流形拓扑的汇合处。许多从高、低维流形得到的技术都部分地延伸到了四维,但却永远无法得到结论性的结果,因此,仍然有许多未解之谜。例如,光滑Poincaré猜想(即所有同伦4-球面同构于4-球面),Schoenflies问题(即所有3-球面在4-球面中的光滑嵌入同构于标准赤道嵌入)仍然是一个未解决的问题。另一方面,研究4-流形的方法也非常丰富,这些方法来自于低维几何方法,如纽结理论,高维外科手术理论,群论和数学物理,以及专门的技术,以4维。特别是菲尔兹奖的工作弗里德曼和唐纳森开辟了世界的4流形。这个项目的目的是了解对称性的4流形:一个对称的流形是一个自我地图,保持结构。这些被称为同胚,或者在光滑流形的情况下,它们被称为非同胚。为了避免重复,从现在开始我只讨论同胚;我所说的每一个都有一个类似的同胚。从流形到其自身的同胚集合形成一个群,它们也以自然的方式形成一个拓扑空间。这意味着人们可以从群论和代数拓扑学的角度来研究同胚的集合。最基本的问题是确定两个同胚何时是同位素的,这意味着一个映射可以连续变形,直到它与另一个映射一致。流形的同胚的合痕类也形成一个群,称为流形的映射类群。研究这些群体的表面既是一个古老而美丽的话题,也是当前重要研究的主题。研究四维流形的类似问题是一个令人兴奋的新领域。这个项目的主要目标是开发新的机器和技术,并进行新的计算4维映射类组。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Four-manifolds up to connected sum with complex projective planes
四流形直至复射影平面的连通和
- DOI:10.1353/ajm.2022.0001
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Kasprowski D
- 通讯作者:Kasprowski D
Embedded surfaces with infinite cyclic knot group
具有无限循环结组的嵌入表面
- DOI:10.2140/gt.2023.27.739
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Conway A
- 通讯作者:Conway A
Doubly slice knots and metabelian obstructions
双片结和代谢障碍
- DOI:10.1142/s1793525321500229
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Orson P
- 通讯作者:Orson P
Characterisation of homotopy ribbon discs
同伦带盘的表征
- DOI:10.1016/j.aim.2021.107960
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Conway A
- 通讯作者:Conway A
Strongly invertible knots, equivariant slice genera, and an equivariant algebraic concordance group
- DOI:10.1112/jlms.12732
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Allison N. Miller;Mark Powell
- 通讯作者:Allison N. Miller;Mark Powell
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Powell其他文献
The
$$mathbb Z$$
Z
-genus of boundary links
边界链接的 $$mathbb Z$$ Z 属
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
P. Feller;Junghwan Park;Mark Powell - 通讯作者:
Mark Powell
Entering a Clinical Trial: Is It Right For You?–A randomized study of the Clinical Trials Video and its impact on the informed consent process
参加临床试验:它适合您吗?——临床试验视频的随机研究及其对知情同意过程的影响
- DOI:
10.1200/jco.2007.25.18_suppl.9072 - 发表时间:
2007 - 期刊:
- 影响因子:45.3
- 作者:
S. Hitchcock;B. Hoffner;Steven Joffe;Mark Powell;C. Parker;A. Wolanski;Joseph Paul Eder;Geoffrey I. Shapiro;S. Bauer - 通讯作者:
S. Bauer
A family of freely slice good boundary links
一系列自由切片的良好边界链接
- DOI:
10.1007/s00208-019-01907-3 - 发表时间:
2018 - 期刊:
- 影响因子:1.4
- 作者:
Jae Choon Cha;Min Hoon Kim;Mark Powell - 通讯作者:
Mark Powell
Smooth slice boundary links whose derivative links have nonvanishing Milnor invariants
平滑切片边界链接,其导数链接具有非零 Milnor 不变量
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
H. Jang;Min Hoon Kim;Mark Powell - 通讯作者:
Mark Powell
Investigation of a port queuing system on COsub2/sub emissions from container shipping
关于集装箱航运二氧化碳排放的港口排队系统研究
- DOI:
10.1016/j.marpolbul.2025.118151 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:4.900
- 作者:
Rachel Rhodes;Callie Leiphardt;Hillary S. Young;Jessica Morten;Byron Hayes;Jen Dillon;Wendy Louttit;Mark Powell;Douglas J. McCauley - 通讯作者:
Douglas J. McCauley
Mark Powell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Powell', 18)}}的其他基金
相似海外基金
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
- 批准号:
1937969 - 财政年份:2019
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
- 批准号:
1812014 - 财政年份:2018
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Research on symmetries and mapping class groups on the surfaces in low-dimensional manifolds
低维流形曲面上的对称性和映射类群研究
- 批准号:
16K05156 - 财政年份:2016
- 资助金额:
$ 25.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry in Fundamental Physics: Properties of Einstein Manifolds Possessing Symmetries
基础物理中的几何:具有对称性的爱因斯坦流形的性质
- 批准号:
393498-2010 - 财政年份:2010
- 资助金额:
$ 25.72万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Defining manifolds and symmetries of nonlinear special functions in several variables
定义多变量非线性特殊函数的流形和对称性
- 批准号:
13440054 - 财政年份:2001
- 资助金额:
$ 25.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
- 批准号:
9529310 - 财政年份:1996
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetries of Manifolds, Surgery and Scalar Curvature
数学科学:流形的对称性、外科手术和标量曲率
- 批准号:
9101575 - 财政年份:1991
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetries of Low-Dimensional Manifolds
数学科学:低维流形的对称性
- 批准号:
9002779 - 财政年份:1990
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Topological aspects of symplectic manifolds with symmetries (A01)
具有对称性的辛流形的拓扑方面(A01)
- 批准号:
330778469 - 财政年份:
- 资助金额:
$ 25.72万 - 项目类别:
CRC/Transregios