Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
基本信息
- 批准号:9529310
- 负责人:
- 金额:$ 5.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-15 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9529310 Lee A famous problem in 3-dimensional topology is to list all finite groups which are the fundamental group of some closed 3-manifold. Since all the known examples come from subgroups of the rotation group that act freely on the 3-sphere, the manifolds involved have positive constant curvature, and the problem is known as the spherical space-form problem. Together with I. Hambleton, Ronnie Lee plans to solve this problem using Donaldson's theory of instantons. Closely related to the above and in collaboration with S.Cappell and E.Miller, Ronnie Lee plans to study generalizations of Casson's invariants and show that they belong to the so-called "finite type invariants." With Weiping Li, the principal investigator plans to investigate two types of Floer homologies. The first, known as the instanton Floer homology, is obtained by applying Morse theory to an infinite dimensional space of connections, and the second, known as the symplectic Floer homology, is based on the Lagrangian intersection theory of a representation variety. They plan to show that these are the same theory and hence establish a conjecture of Atiyah. Finally, with Wilczynski, the principal investigator plans to study the problem of finding locally flat surfaces of minimum genus representing a given homology class of a simply connected 4-manifold. In the smooth setting, the corresponding problem is known as the Thom conjecture and has been solved recently by P.Kronheimer and T.Mrowka to great acclaim. In short, the project plans to study several well-known problems in 3- and 4-dimensional manifold theory concerning the basic symmetric nature of these objects and also the geometry of the submanifolds inside them. Many of the techniques to be used in solving these problems are new and were not previously available. They were developed through the interaction between quantum physics and topology in recent years. On the mathematics side they are known under the heading of Sympl ectic Invariants, while on the physics side they have their counterpart in Quantum Field Theory. ***
三维拓扑学中一个著名的问题是列出作为某闭三维流形的基本群的所有有限群。由于所有已知的例子都来自于自由作用于3球的旋转群的子群,因此所涉及的流形具有正的常曲率,并且该问题被称为球面空间形式问题。罗尼·李和i·汉布尔顿计划用唐纳森的瞬子理论来解决这个问题。与上述密切相关并与S.Cappell和E.Miller合作,Ronnie Lee计划研究Casson不变量的推广,并证明它们属于所谓的“有限型不变量”。首席研究员李卫平计划研究两种类型的花同源性。第一个被称为瞬时花同调,是通过将莫尔斯理论应用于无限维的连接空间而得到的,第二个被称为辛花同调,是基于一个表示变体的拉格朗日交集理论。他们计划证明这些都是相同的理论,从而建立一个关于阿蒂亚的猜想。最后,与Wilczynski一起,首席研究员计划研究寻找表示单连通4流形的给定同调类的最小属局部平面的问题。在光滑的情况下,相应的问题被称为托姆猜想,最近P.Kronheimer和T.Mrowka解决了这个问题,获得了极大的赞誉。简而言之,该项目计划研究三维和四维流形理论中几个众所周知的问题,这些问题涉及这些物体的基本对称性质以及它们内部子流形的几何形状。用于解决这些问题的许多技术都是新的,以前没有。它们是近年来在量子物理和拓扑学的相互作用下发展起来的。在数学方面,它们被称为“对称不变量”,而在物理方面,它们在量子场论中有对应的名称。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronnie Lee其他文献
On the homology of double branched covers
关于双分支覆盖的同源性
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Ronnie Lee;S. Weintraub - 通讯作者:
S. Weintraub
Locally flat 2-spheres in simply connected 4-manifolds
简单连接的 4 流形中的局部平坦 2 球体
- DOI:
10.1007/bf02566615 - 发表时间:
1990 - 期刊:
- 影响因子:0.9
- 作者:
Ronnie Lee;Dariusz M. Wilczyński - 通讯作者:
Dariusz M. Wilczyński
Analyzing the interestingness of association rules from the temporal dimension
从时间维度分析关联规则的趣味性
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
B. Liu;Y. Ma;Ronnie Lee - 通讯作者:
Ronnie Lee
Representing homology classes by locally flat surfaces of minimum genus
通过最小属的局部平坦表面来表示同源类
- DOI:
10.1353/ajm.1997.0029 - 发表时间:
1997 - 期刊:
- 影响因子:1.7
- 作者:
Ronnie Lee;Dariusz M. Wilczyński - 通讯作者:
Dariusz M. Wilczyński
Surgery on closed 4-manifolds with free fundamental group
具有自由基本组的闭合 4 流形的手术
- DOI:
10.1017/s0305004102006084 - 发表时间:
2001 - 期刊:
- 影响因子:0.8
- 作者:
Vyacheslav Krushkal;Ronnie Lee - 通讯作者:
Ronnie Lee
Ronnie Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronnie Lee', 18)}}的其他基金
Mathematical Sciences: Low Dimensional Manifolds, Transformation Groups, and Cohomology of Discrete Groups
数学科学:低维流形、变换群和离散群的上同调
- 批准号:
9201935 - 财政年份:1992
- 资助金额:
$ 5.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Low Dimensional Manifolds, Transformation Groups, and Cohomology of Finite and Discrete Groups
数学科学:低维流形、变换群以及有限和离散群的上同调研究
- 批准号:
8903302 - 财政年份:1989
- 资助金额:
$ 5.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Algebraic K-Theory, Algebraic Groups and Algebraic Topology
数学科学:代数K理论、代数群和代数拓扑研究
- 批准号:
8603683 - 财政年份:1986
- 资助金额:
$ 5.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Homotopy Theory and Its Geometric Applications
数学科学:同伦理论及其几何应用
- 批准号:
8401578 - 财政年份:1984
- 资助金额:
$ 5.38万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
- 批准号:
9896376 - 财政年份:1998
- 资助金额:
$ 5.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Low-Dimensional Topology in Group Theory
数学科学:群论中的几何和低维拓扑
- 批准号:
9703756 - 财政年份:1997
- 资助金额:
$ 5.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Low-Dimensional Geometry and Topology
数学科学:低维几何和拓扑
- 批准号:
9704135 - 财政年份:1997
- 资助金额:
$ 5.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
- 批准号:
9704204 - 财政年份:1997
- 资助金额:
$ 5.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic and Contact Structures and Low Dimensional Topology
数学科学:辛和接触结构以及低维拓扑
- 批准号:
9625654 - 财政年份:1996
- 资助金额:
$ 5.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Variational Problems on Riemann Surfaces to Low Dimensional Geometry
数学科学:黎曼曲面变分问题在低维几何中的应用
- 批准号:
9626565 - 财政年份:1996
- 资助金额:
$ 5.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Manifolds and Knot Theory
数学科学:低维流形和结理论
- 批准号:
9626550 - 财政年份:1996
- 资助金额:
$ 5.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Topology
数学科学:低维拓扑
- 批准号:
9501105 - 财政年份:1995
- 资助金额:
$ 5.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Knot Theory and Low- Dimensional Topology: Applications of Quasipositive Knots and Surfaces
数学科学:结理论和低维拓扑问题:拟正结和曲面的应用
- 批准号:
9504832 - 财政年份:1995
- 资助金额:
$ 5.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Low-Dimensional Topology and Geometric Group Theory
数学科学:低维拓扑和几何群论专题
- 批准号:
9504946 - 财政年份:1995
- 资助金额:
$ 5.38万 - 项目类别:
Continuing Grant