Developing Quantum-Optical Measurements of Excitonic Coherence for Quantum Entanglement in Single Organic Molecules

开发单个有机分子中量子纠缠的激子相干性的量子光学测量

基本信息

  • 批准号:
    EP/V048805/1
  • 负责人:
  • 金额:
    $ 25.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Organic semiconductors are carbon-based materials that have found widespread use in organic light emitting diodes, solar cells, lasers, and field effect transistors. Excited electronic states in organic semiconductors are delocalised electron hole pairs, called excitons. Very initially these excitons are formed with their partial molecular orbital contributions all perfectly in phase, a quantum mechanically coherent object. Subsequent interactions with the environment dephase the components, collapsing the exciton wavefunction into a classical object. Measurement of this collapse and identifying chemical structures that can preserve coherence long enough for it to be harnessed for quantum entanglement are very challenging.In this proposal novel quantum-optical measurements of excitonic coherence in organic semiconductors will be developed. This will be achieved by measuring the second order photoluminescence intensity cross-correlations in a Hanbury Brown and Twiss geometry of single molecules as a function of energy and time. In doing so, state coupling and state coherences will be measured and chemical structures that can preserve them identified. Two systems will be explored, conjugated molecular dyads where strong coupling exists between the states, and covalently linked dimers where exciton delocalisation occurs over larger distances. The valuable new knowledge that is obtained by working at the single molecule level with novel quantum-optical techniques will realise advances in the fundamental understanding of the nature of excitons, and highlight advantageous ways their properties can be chemically engineered for quantum applications.
有机半导体是碳基材料,已发现其广泛用于有机发光二极管、太阳能电池、激光器和场效应晶体管。有机半导体中的激发电子态是离域电子空穴对,称为激子。最初,这些激子形成时,它们的部分分子轨道贡献都完全同相,是一个量子力学相干的物体。随后与环境的相互作用使组分退相,使激子波函数坍缩成经典物体。这种崩溃的测量和识别的化学结构,可以保持足够长的时间来利用它的量子纠缠相干是非常具有挑战性的。在这个建议新颖的量子光学测量激子相干有机半导体将开发。这将通过测量作为能量和时间的函数的单分子的Hanbury Brown和Twiss几何中的二阶光致发光强度互相关来实现。在这样做的过程中,状态耦合和状态相干性将被测量,并确定可以保持它们的化学结构。两个系统将被探讨,共轭分子二对强耦合之间存在的状态,和共价连接的二聚体激子离域发生在更大的距离。通过在单分子水平上使用新的量子光学技术获得的有价值的新知识将实现对激子性质的基本理解的进步,并突出了它们的性质可以被化学工程用于量子应用的有利方式。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A red-orange carbazole-based iridium(III) complex: Synthesis, thermal, optical and electrochemical properties and OLED application
  • DOI:
    10.1016/j.jorganchem.2021.122004
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Nuray Altinolcek;Ahmet Battal;Mustafa Tavaslı;Joseph Cameron;W. Peveler;Holly A Yu;P. Skabara;
  • 通讯作者:
    Nuray Altinolcek;Ahmet Battal;Mustafa Tavaslı;Joseph Cameron;W. Peveler;Holly A Yu;P. Skabara;
Hybrid light-matter chiral polariton state and the electromagnetic enantiomers
杂化光-物质手性极化子态和电磁对映体
  • DOI:
    10.21203/rs.3.rs-2947098/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kumar R
  • 通讯作者:
    Kumar R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gordon James Hedley其他文献

Gordon James Hedley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gordon James Hedley', 18)}}的其他基金

Measuring Nanoscale Exciton Motion & Annihilation in Single Molecules with Photon Statistics
测量纳米级激子运动
  • 批准号:
    EP/V004921/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Continuing Grant
Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
  • 批准号:
    EP/Z000548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Research Grant
In-vivo studies for a quantum optical non-invasive glucose sensor
量子光学非侵入式葡萄糖传感器的体内研究
  • 批准号:
    10105375
  • 财政年份:
    2024
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Launchpad
Quantum Manybody Dynamical Effects in Non-linear Optical Spectroscopy
非线性光谱学中的量子多体动力学效应
  • 批准号:
    2404788
  • 财政年份:
    2024
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 2: Expanding Quantum Research and Education at Winston-Salem State University with Research on Hybrid Microwave-Optical Quantum Devices
ExpandQISE:轨道 2:通过混合微波光量子器件的研究扩大温斯顿塞勒姆州立大学的量子研究和教育
  • 批准号:
    2329017
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Continuing Grant
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
  • 批准号:
    2301580
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Standard Grant
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
  • 批准号:
    23H01131
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on continuous-variable optical quantum error correction
连续可变光量子纠错研究
  • 批准号:
    23KJ0498
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    $ 25.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了