Lagrangians from Algebra and Combinatorics
代数和组合学中的拉格朗日量
基本信息
- 批准号:EP/V049097/1
- 负责人:
- 金额:$ 39.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mirror symmetry is a connection between three seemingly unrelated kinds of geometry. This link, first observed by physicists in string theory, has led to an flurry of surprising predictions, powerful tools, and fascinating questions for geometers.The first kind of geometry, algebraic geometry, studies rigid objects defined by equations such as lines, circles, and ellipses. Geometers have studied enumeration problems in algebraic geometry since antiquity. Starting at common knowledge (e.g., how many points do two lines intersect at), questions in enumerative geometry rapidly approach the limits of our mathematical capability. Symplectic geometry is defined by the laws of motion, like the trajectory of a planet around the sun. While historically used to calculate the mechanics of constrained systems, such as a pendulum attached to a metal rod, the language of symplectic geometry has become the natural setting for mathematical physics as a whole.The third kind of geometry --- called tropical geometry for its historical connection to Brazil --- studies optimization and maximization. Shapes here describe the problems in linear optimization, such as efficiently assigning workers to jobs in a factory.On a small scale, algebraic and symplectic geometry look incredibly different: algebraic geometry seems very orderly, while symplectic geometry frequently handles chaotic scenarios such as a table full of billiard balls. However, when one zooms out to view the large-scale behaviour, both geometries can be approximated by tropical geometry. If an algebraic space and symplectic space tropically look the same, they are called ``mirror spaces''.In the last two decades, the study of ``Complex to Tropical correspondences'' has produced exciting results by viewing problems in algebra through the lens of tropical geometry. This proposal will look at recently developed ``Tropical to Lagrangian correspondences,'' where symplectic structures (Lagrangians) are built from tropical data.The research agenda within the scope of mirror symmetry includes finding new mirror spaces, developing new computational methods in symplectic geometry, and investigating exciting applications of symplectic geometry in tropical curves. The project will also look at interfaces outside of geometry, specifically to dimer models (a description of domino tilings) and mutations (a modification process occurring in symplectic geometry, cluster algebras, and triangulated categories).
镜像对称是三种看似无关的几何之间的联系。这种联系最早是由物理学家在弦理论中观察到的,它带来了一系列令人惊讶的预测、强大的工具和令人着迷的几何问题。第一种几何,代数几何,研究由直线、圆和椭圆等方程定义的刚性物体。自古以来,几何学家就研究代数几何中的枚举问题。从常识开始(例如,两条直线相交于多少点),数列几何的问题迅速接近我们数学能力的极限。辛几何是由运动定律定义的,就像行星绕太阳运行的轨迹一样。虽然历史上用于计算约束系统的力学,例如连接在金属棒上的钟摆,辛几何的语言已经成为数学物理作为一个整体的自然设置。第三种几何——因其与巴西的历史联系而被称为热带几何——研究最优化和最大化。这里的形状描述了线性优化中的问题,例如在工厂中有效地分配工人的工作。在小尺度上,代数几何和辛几何看起来非常不同:代数几何看起来非常有序,而辛几何经常处理混乱的场景,比如一张满是台球的桌子。然而,当一个人缩小观察大尺度的行为时,这两种几何形状都可以用热带几何形状来近似。如果代数空间和辛空间在热带上看起来相同,它们被称为“镜像空间”。在过去的二十年里,“热带复对应”的研究通过热带几何的透镜来观察代数问题,产生了令人兴奋的结果。这个提议将着眼于最近发展的“热带-拉格朗日对应”,其中辛结构(拉格朗日)是由热带数据建立的。在镜像对称范围内的研究议程包括寻找新的镜像空间,开发新的辛几何计算方法,以及研究辛几何在热带曲线中的令人兴奋的应用。该项目还将研究几何之外的接口,特别是二聚体模型(对多米诺骨牌的描述)和突变(发生在辛几何、簇代数和三角分类中的修改过程)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reverse isoperimetric inequalities for Lagrangian intersection Floer theory
拉格朗日交集弗洛尔理论的逆等周不等式
- DOI:10.48550/arxiv.2306.04761
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chassé J
- 通讯作者:Chassé J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Hicks其他文献
An Exposition on Family Floer Theory
家庭花序理论阐述
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Hicks - 通讯作者:
Jeffrey Hicks
Lagrangian cobordisms and Lagrangian surgery
拉格朗日坐标和拉格朗日手术
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Hicks - 通讯作者:
Jeffrey Hicks
How Would Medicare for All Affect Health System Capacity? Evidence from Medicare for Some
全民医疗保险将如何影响卫生系统的能力?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Clemens;J. Gottlieb;Jeffrey Hicks - 通讯作者:
Jeffrey Hicks
Cash on the table? Imperfect take-up of tax Incentives and firm investment behavior
- DOI:
https://doi.org/10.1016/j.jpubeco.2022.104632 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Wei Cui;Jeffrey Hicks;Jing Xing - 通讯作者:
Jing Xing
Administrative Procedures as Tax Enforcement Tools
作为税务执法工具的行政程序
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wei Cui;Jeffrey Hicks;Michael Wiebe - 通讯作者:
Michael Wiebe
Jeffrey Hicks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Continuing Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Conference: 2023 Combinatorial Algebra meets Algebraic Combinatorics (CAAC)
会议:2023 组合代数遇上代数组合 (CAAC)
- 批准号:
2302019 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Conference: Women in Algebra and Combinatorics. Northeast Conference Celebrating the Association for Women in Mathematics: 50 Years and Counting
会议:代数和组合学中的女性。
- 批准号:
2305413 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2022
- 资助金额:
$ 39.89万 - 项目类别:
Discovery Grants Program - Individual
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Algebra, combinatorics and mathematical computer science
代数、组合学和数学计算机科学
- 批准号:
CRC-2021-00120 - 财政年份:2022
- 资助金额:
$ 39.89万 - 项目类别:
Canada Research Chairs