Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
基本信息
- 批准号:RGPIN-2017-05732
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is a central area of mathematics. It has importance not just in pure and applied mathematics, but also in the natural sciences, engineering, and beyond (eg. economics). At its core, algebraic geometry is the study of common zeros of collections of polynomials in multiple variables. A general theme in the field is to translate geometric questions about these zero-sets, or algebraic varieties, into equivalent algebraic questions. Examples of such geometric questions include "does this zero-set have multiple components?" and "are there any singularities?". The proposed research will address these types of geometric questions for important classes of algebraic varieties with many symmetries. For such algebraic varieties, it is often possible to further translate certain algebraic questions into combinatorics (eg. counting problems, or problems about discrete structures). Using and developing combinatorial tools to study algebro-geometric problems is the subject of combinatorial commutative algebra, the particular area of mathematics in which the proposal fits. Motivated by past successes of multiple mathematicians, I will use methods from combinatorial commutative algebra to study algebro-geometric properties of three classes of algebraic varieties carrying groups of symmetries: quiver loci of Dynkin quivers, Schubert varieties and related varieties, and certain Hilbert schemes. These varieties are important in pure mathematics, and some have found applications in other fields. For example, Schubert varieties are significant in both algebraic geometry and representation theory, and have applications in computer graphics and statistics; in recent joint work with Alex Fink and Seth Sullivant, we used properties of Schubert varieties to study conditional independence in algebraic statistics.Results will be of interest to mathematicians, and will contribute to the literature on these important algebraic varieties. In certain instances, results will connect seemingly different mathematical objects, or communities of researchers studying different topics (eg. along the lines of my past joint works connecting type A quiver loci and Schubert varieties, and using Schubert varieties to study conditional independence). Results in particular directions will yield new insights into important open problems. Finally, the proposed research contains many projects suitable for students at all levels, and so the research program will have further impact through the training of highly qualified personnel.
代数几何是数学的一个中心领域。它不仅在纯数学和应用数学中很重要,而且在自然科学、工程等领域也很重要。经济学)。代数几何的核心是研究多变量多项式集合的公共零。该领域的一个普遍主题是将关于这些零集或代数变体的几何问题转化为等价代数问题。这类几何问题的例子包括“这个零集有多个分量吗?”和“有奇点吗?”提出的研究将解决这些类型的几何问题的重要类别的代数变异具有许多对称性。对于这样的代数变体,通常可以将某些代数问题进一步转化为组合问题(例如:计数问题,或者离散结构的问题)。使用和发展组合工具来研究代数几何问题是组合交换代数的主题,这是该建议适合的特殊数学领域。受多位数学家过去成功的启发,我将利用组合交换代数的方法,研究三种承载对称群的代数变种的代数几何性质:Dynkin颤栗的颤振轨迹、Schubert变种及相关变种、某些Hilbert格式。这些变量在纯数学中很重要,其中一些在其他领域也有应用。例如,舒伯特变体在代数几何和表示理论中都很重要,在计算机图形学和统计学中也有应用;在最近与Alex Fink和Seth sullivan的合作中,我们利用Schubert变量的性质来研究代数统计中的条件独立性。结果将引起数学家的兴趣,并将有助于这些重要的代数变种的文献。在某些情况下,结果将连接看似不同的数学对象,或研究不同主题的研究人员群体。沿着我过去的联合工作的路线,连接A型颤振位点和舒伯特变种,并使用舒伯特变种来研究条件独立性)。特定方向的结果将产生对重要开放问题的新见解。最后,拟议的研究包含许多适合各级学生的项目,因此研究计划将通过培养高素质人才产生进一步的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajchgot, Jenna其他文献
Gröbner bases, symmetric matrices, and type C Kazhdan–Lusztig varieties
Gröbner 碱、对称矩阵和 C 型 KazhdanâLusztig 簇
- DOI:
10.1112/jlms.12856 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Escobar, Laura;Fink, Alex;Rajchgot, Jenna;Woo, Alexander - 通讯作者:
Woo, Alexander
Castelnuovo-Mumford regularity of ladder determinantal varieties and patches of Grassmannian Schubert varieties
阶梯行列式簇和格拉斯曼舒伯特簇的斑块的Castelnuovo-Mumford正则
- DOI:
10.1016/j.jalgebra.2022.11.001 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Rajchgot, Jenna;Robichaux, Colleen;Weigandt, Anna - 通讯作者:
Weigandt, Anna
Rajchgot, Jenna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajchgot, Jenna', 18)}}的其他基金
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Frobenius splitting, hilbert scheme of points, algebraic geometry, commutative algebra,
弗罗贝尼乌斯分裂、希尔伯特点方案、代数几何、交换代数、
- 批准号:
388942-2010 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Frobenius splitting, hilbert scheme of points, algebraic geometry, commutative algebra,
弗罗贝尼乌斯分裂、希尔伯特点方案、代数几何、交换代数、
- 批准号:
388942-2010 - 财政年份:2010
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Uncertainty Principles of Multi-Scale Integral Transforms
多尺度积分变换的不确定性原理
- 批准号:
358590-2008 - 财政年份:2008
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Master's
相似海外基金
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Commutative Algebra: Frobenius in Geometry and Combinatorics
交换代数:几何和组合学中的弗罗贝尼乌斯
- 批准号:
1501625 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Combinatorics in algebraic geometry and commutative algebra
代数几何和交换代数中的组合学
- 批准号:
303833-2004 - 财政年份:2006
- 资助金额:
$ 1.53万 - 项目类别:
Postdoctoral Fellowships
Combinatorics in algebraic geometry and commutative algebra
代数几何和交换代数中的组合学
- 批准号:
303833-2004 - 财政年份:2005
- 资助金额:
$ 1.53万 - 项目类别:
Postdoctoral Fellowships
Groebner Fans in Combinatorics, Representation Theory and Commutative Algebra: Theory and Computation
格罗布纳的组合学、表示论和交换代数爱好者:理论与计算
- 批准号:
0401047 - 财政年份:2004
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant














{{item.name}}会员




