Severe Storm Wave Loads on Offshore Wind Turbine Foundations (SEA-SWALLOWS)
海上风力涡轮机基础上的严重风暴波浪载荷(海燕)
基本信息
- 批准号:EP/V050079/1
- 负责人:
- 金额:$ 101.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Offshore structures, including offshore wind turbine foundations, marine renewable energy device support structures, bridge piers, and floating vessels, are routinely exposed to harsh environmental loads. These frequently drive the design. The physics and statistics of wave-structure interaction are complex and still not fully understood for strongly non-linear loads as experienced in the most severe conditions.The particular focus of this project is fixed offshore wind turbines. These are one of the most promising sources of clean energy; and central to the UK's ambitions to become carbon neutral. The price of offshore wind has fallen significantly over the past ten years. Part of this reduction has been due to improvements in technical understanding leading to less conservative designs. Recently, there has been a trend to move to more exposed and deeper water locations with 'better' wind resources. However, such locations are susceptible to more extreme wave heights and subsequently more severe loading. These changes have increased the importance of wave loading models able to give accurate predictions of base shear and moment time-series. It is important that such models predict not only the magnitude of the load but also the correct frequency content of the loading. For instance, a large slamming load may be of sufficiently short duration that the load is not simply transmitted to the foundation. Further, structures are typically designed so as to avoid the natural frequency of the storm waves. However, if loading was to occur at higher harmonics of the fundamental wave frequencies these may coincide with the structure's natural frequencies, thus greatly increasing their importance for design. For structural fatigue assessment very long time series are required. Therefore, experimental and high-fidelity numerical models are too resource-intensive to be directly useful for practical engineering calculations. A highly efficient yet still sufficiently accurate alternative is required.The physics of wave loading is typically split into non-breaking and breaking loads. These have different magnitudes and timescales as they are dominated by different physical phenomena. For non-breaking waves, traditionally the Morison equation has been widely accepted as the starting point for calculating wave loading on offshore structures by most modern design standards. For slender cylinders in the inertia regime such as the monopiles used for offshore wind, extensions have been made to the Morison model, taking wave kinematics as inputs. Predicting wave kinematics is itself a difficult task, particularly for severe yet random sea-states where both standard regular wave stream function theory and 2nd order random wave theory are imperfect models.Breaking waves are notoriously difficult to model numerically and to measure experimentally due to the violence of the hydrodynamics and scaling issues. Various models have been proposed to simulate the time history of the loading. However, when calculating extreme responses and foundation reactions for dynamically sensitive structures, it is generally sufficient to know the total applied impulse (and where it acts) for impact loads rather than the exact time-history. Estimating the impulse is far more robust, quicker and the physics can more easily be modelled. We aim to revolutionize load calculations on offshore structures using novel fluid mechanics to develop fast reduced-order engineering models. While the focus of this work will be examining the impact of extreme wave loading on offshore wind turbine foundations, the ideas and tools generated will be more broadly applicable. We will develop a computationally fast method and an open source tool to be used by practicing engineers in industry to model long-term cyclic loading, leading to more efficient designs of offshore structures, reducing construction cost whilst preserving function and reliability.
近海结构,包括海上风力涡轮机基础,可再生能源设备支撑结构,桥梁码头和浮动容器,通常会暴露于严重的环境载荷上。这些经常推动设计。波浪结构相互作用的物理和统计数据是复杂的,对于在最严重的条件下经历的强烈非线性载荷仍未完全理解。该项目的特定重点是固定的海上风力涡轮机。这些是清洁能源最有希望的来源之一。这是英国雄心勃勃的中立的核心。在过去的十年中,海上风的价格显着下降。这一减少的部分原因是由于技术理解的改进导致了较不保守的设计。最近,有一种趋势是通过“更好”的风资源转向更曝光和更深的水位。但是,此类位置容易受到更极端的波高度,随后更严重的负载。这些变化提高了波载模型的重要性,能够对基本剪切和时刻序列的准确预测。重要的是,此类模型不仅可以预测负载的大小,还可以预测负载的正确频率内容。例如,较大的猛击负载可能足够短,因此负载不简单地传输到基础上。此外,通常设计结构以避免风暴波的固有频率。但是,如果要在较高的基本波频率的较高谐波下进行负载,则可能与结构的固有频率相吻合,从而大大提高其对设计的重要性。对于结构性疲劳评估,需要很长的时间序列。因此,实验性和高保真数值模型过于资源密集型,无法直接用于实际工程计算。需要一个高效但仍然足够准确的替代方案。波载的物理通常分为非断裂和断裂载荷。这些具有不同的幅度和时间尺度,因为它们由不同的物理现象主导。对于非断裂波,传统上,莫里森方程已被广泛接受为按大多数现代设计标准计算海上结构上的波载的起点。对于惯性状态中的细长圆柱体,例如用于海上风的单孔,已经对莫里森模型进行了扩展,将波浪运动作为输入。预测波动运动本身就是一项艰巨的任务,特别是对于严重但随机的海态,标准的常规波流函数理论和第二阶随机波理论都是不完善的模型。众所周知,由于流体动力学和缩放问题的暴力,众所周知,很难在数值上进行建模,并且在实验上进行了测量。已经提出了各种模型来模拟加载的时间历史。但是,当计算动态敏感结构的极端响应和基础反应时,通常足以知道施加的脉冲(以及它的作用)对撞击负荷而不是确切的时间历史。估计冲动更加稳健,更快,物理可以更容易地建模。我们旨在使用新型流体力学来开发快速减少订购工程模型的海上结构上的负载计算。尽管这项工作的重点将检查极端波载对海上风力涡轮机基础的影响,但生成的想法和工具将更加广泛地适用。我们将开发一种计算快速的方法和一种开源工具,可以由行业中的工程师使用,以建模长期的循环负载,从而更有效地设计了离岸结构的设计,从而降低了施工成本,同时保持了功能和可靠性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transformed-FNV: Wave forces on a vertical cylinder - A free-surface formulation
Transformed-FNV:垂直圆柱体上的波浪力 - 自由表面公式
- DOI:10.1016/j.coastaleng.2024.104454
- 发表时间:2024
- 期刊:
- 影响因子:4.4
- 作者:Taylor P
- 通讯作者:Taylor P
Experimental study on the interactions between wave groups in double-wave-group focusing
- DOI:10.1063/5.0142042
- 发表时间:2023-03
- 期刊:
- 影响因子:4.6
- 作者:Binzhen Zhou;Kanglixi Ding;Jiahao Wang;Lei Wang;P. Jin;T. Tang
- 通讯作者:Binzhen Zhou;Kanglixi Ding;Jiahao Wang;Lei Wang;P. Jin;T. Tang
Estimating space-time wave statistics using a sequential sampling method and Gaussian process regression
使用顺序采样方法和高斯过程回归估计时空波统计量
- DOI:10.1016/j.apor.2022.103127
- 发表时间:2022
- 期刊:
- 影响因子:4.3
- 作者:Tang T
- 通讯作者:Tang T
The influence of directional spreading on rogue waves triggered by abrupt depth transitions
方向传播对突然深度转变引发的异常波的影响
- DOI:10.1017/jfm.2023.737
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Tang T
- 通讯作者:Tang T
Wave loads on ocean infrastructure increase as a result of waves passing over abrupt depth transitions
- DOI:10.1007/s40722-022-00269-4
- 发表时间:2022-11
- 期刊:
- 影响因子:1.9
- 作者:Zhenhao Li;T. Tang;Yan Li;S. Draycott;T. S. van den Bremer;T. Adcock
- 通讯作者:Zhenhao Li;T. Tang;Yan Li;S. Draycott;T. S. van den Bremer;T. Adcock
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Zang其他文献
The Predictive Value of CHA2DS2–VASc Score as a Predictor for Left Ventricular Thrombus After Acute Anterior ST-Elevation Myocardial Infarction: A Case-Control Retrospective Analysis
CHA2DS2–VASc 评分作为急性前壁 ST 段抬高型心肌梗死后左心室血栓的预测因子的预测价值:病例对照回顾性分析
- DOI:
10.21203/rs.3.rs-215252/v1 - 发表时间:
2021 - 期刊:
- 影响因子:1.2
- 作者:
Nan Zheng;Jun Zang - 通讯作者:
Jun Zang
Influence of offshore fringing reefs on infragravity period oscillations within a harbor
近海岸礁对港口内次重力周期振荡的影响
- DOI:
10.1016/j.oceaneng.2018.04.006 - 发表时间:
2018-06 - 期刊:
- 影响因子:5
- 作者:
Junliang Gao;Xiaojun Zhou;Jun Zang;Qiang Chen;Li Zhou - 通讯作者:
Li Zhou
Wordy: Interactive Word Cloud to Summarize and Browse Online Videos to Enhance eLearning
Wordy:用于总结和浏览在线视频以增强电子学习的交互式文字云
- DOI:
10.1109/sii46433.2020.9026306 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Zhu;Jun Zang;Hiroaki Tobita - 通讯作者:
Hiroaki Tobita
Harmonic Analyses of Hydrodynamic Characteristics for Gap Resonance Between Fixed Box and Vertical Wall
固定箱体与垂直墙间隙共振水动力特性的谐波分析
- DOI:
10.1007/s13344-021-0063-7 - 发表时间:
2021-09 - 期刊:
- 影响因子:1.6
- 作者:
Zhiwei He;Junliang Gao;Hongzhou Chen;Jun Zang;Qian Liu;Gang Wang - 通讯作者:
Gang Wang
Topographic influences on transient harbor oscillations excited by N-waves
地形对 N 波激发的瞬态港口振荡的影响
- DOI:
10.1016/j.oceaneng.2019.106548 - 发表时间:
2019-11 - 期刊:
- 影响因子:5
- 作者:
Junliang Gao;Xiaozhou Ma;Guohai Dong;Jun Zang;Xiaojun Zhou;Li Zhou - 通讯作者:
Li Zhou
Jun Zang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Zang', 18)}}的其他基金
FROTH: Fundamentals and Reliability of Offshore Structure Hydrodynamics
FROTH:海上结构流体动力学的基础知识和可靠性
- 批准号:
EP/J012777/1 - 财政年份:2012
- 资助金额:
$ 101.25万 - 项目类别:
Research Grant
Nonlinear Wave Loads and Wave Hydrodynamic Effects on Offshore Wind Turbine Foundations
海上风力发电机基础上的非线性波浪载荷和波浪水动力效应
- 批准号:
GR/T07220/02 - 财政年份:2007
- 资助金额:
$ 101.25万 - 项目类别:
Research Grant
相似国自然基金
南海“台风走廊”全新世千年尺度风暴沉积的陆架记录与主控因素
- 批准号:42366003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于核酸四面体“信号增强塔”的微针分子识别系统在炎症因子风暴多层面实时监测中的研究和应用
- 批准号:22374029
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
血小板微粒在CAR-T治疗炎症因子风暴形成中的作用及机制研究
- 批准号:82302602
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
风暴潮影响下滨海盐沼土壤水盐运移规律
- 批准号:52309084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TNF-α和IFN-γ协同作用强化金黄色葡萄球菌感染引起的巨噬细胞焦亡和炎症因子风暴的机制研究
- 批准号:32300770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a flood risk assessment method due to multiple hazards of storm surge, high wave, and river-flow
风暴潮、巨浪、河水多重灾害的洪水风险评估方法的开发
- 批准号:
20K05046 - 财政年份:2020
- 资助金额:
$ 101.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Future change of storm surge and high wave due to explosive cyclones and development of numerical model
爆发性气旋引起的风暴潮和巨浪的未来变化及数值模型的发展
- 批准号:
19K15097 - 财政年份:2019
- 资助金额:
$ 101.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Physics of Dune Erosion during Extreme Wave and Storm-Surge Events
合作研究:极端波浪和风暴潮事件期间沙丘侵蚀的物理学
- 批准号:
1756477 - 财政年份:2018
- 资助金额:
$ 101.25万 - 项目类别:
Standard Grant
An Australian storm wave damage and beach erosion early warning system
澳大利亚风暴潮破坏和海滩侵蚀预警系统
- 批准号:
LP170100161 - 财政年份:2018
- 资助金额:
$ 101.25万 - 项目类别:
Linkage Projects
Collaborative Research: Physics of Dune Erosion during Extreme Wave and Storm-Surge Events
合作研究:极端波浪和风暴潮事件期间沙丘侵蚀的物理学
- 批准号:
1756449 - 财政年份:2018
- 资助金额:
$ 101.25万 - 项目类别:
Standard Grant