Severe Storm Wave Loads on Offshore Wind Turbine Foundations (SEA-SWALLOWS)

海上风力涡轮机基础上的严重风暴波浪载荷(海燕)

基本信息

  • 批准号:
    EP/V050079/1
  • 负责人:
  • 金额:
    $ 101.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Offshore structures, including offshore wind turbine foundations, marine renewable energy device support structures, bridge piers, and floating vessels, are routinely exposed to harsh environmental loads. These frequently drive the design. The physics and statistics of wave-structure interaction are complex and still not fully understood for strongly non-linear loads as experienced in the most severe conditions.The particular focus of this project is fixed offshore wind turbines. These are one of the most promising sources of clean energy; and central to the UK's ambitions to become carbon neutral. The price of offshore wind has fallen significantly over the past ten years. Part of this reduction has been due to improvements in technical understanding leading to less conservative designs. Recently, there has been a trend to move to more exposed and deeper water locations with 'better' wind resources. However, such locations are susceptible to more extreme wave heights and subsequently more severe loading. These changes have increased the importance of wave loading models able to give accurate predictions of base shear and moment time-series. It is important that such models predict not only the magnitude of the load but also the correct frequency content of the loading. For instance, a large slamming load may be of sufficiently short duration that the load is not simply transmitted to the foundation. Further, structures are typically designed so as to avoid the natural frequency of the storm waves. However, if loading was to occur at higher harmonics of the fundamental wave frequencies these may coincide with the structure's natural frequencies, thus greatly increasing their importance for design. For structural fatigue assessment very long time series are required. Therefore, experimental and high-fidelity numerical models are too resource-intensive to be directly useful for practical engineering calculations. A highly efficient yet still sufficiently accurate alternative is required.The physics of wave loading is typically split into non-breaking and breaking loads. These have different magnitudes and timescales as they are dominated by different physical phenomena. For non-breaking waves, traditionally the Morison equation has been widely accepted as the starting point for calculating wave loading on offshore structures by most modern design standards. For slender cylinders in the inertia regime such as the monopiles used for offshore wind, extensions have been made to the Morison model, taking wave kinematics as inputs. Predicting wave kinematics is itself a difficult task, particularly for severe yet random sea-states where both standard regular wave stream function theory and 2nd order random wave theory are imperfect models.Breaking waves are notoriously difficult to model numerically and to measure experimentally due to the violence of the hydrodynamics and scaling issues. Various models have been proposed to simulate the time history of the loading. However, when calculating extreme responses and foundation reactions for dynamically sensitive structures, it is generally sufficient to know the total applied impulse (and where it acts) for impact loads rather than the exact time-history. Estimating the impulse is far more robust, quicker and the physics can more easily be modelled. We aim to revolutionize load calculations on offshore structures using novel fluid mechanics to develop fast reduced-order engineering models. While the focus of this work will be examining the impact of extreme wave loading on offshore wind turbine foundations, the ideas and tools generated will be more broadly applicable. We will develop a computationally fast method and an open source tool to be used by practicing engineers in industry to model long-term cyclic loading, leading to more efficient designs of offshore structures, reducing construction cost whilst preserving function and reliability.
海上结构,包括海上风力涡轮机基础、海洋可再生能源装置支撑结构、桥墩和浮船,通常暴露于恶劣的环境载荷。这些经常推动设计。波浪-结构相互作用的物理和统计学是复杂的,对于在最恶劣条件下经历的强非线性载荷,仍然没有完全理解。这是最有前途的清洁能源之一,也是英国实现碳中和目标的核心。海上风电的价格在过去十年中大幅下降。减少的部分原因是技术理解的提高导致设计不那么保守。最近,有一种趋势是转移到更暴露和更深的水域,拥有“更好”的风力资源。然而,这样的位置容易受到更极端的波高和随后更严重的负载的影响。这些变化增加了波浪荷载模型的重要性,能够准确预测基底剪力和弯矩时间序列。重要的是,这种模型不仅预测载荷的大小,而且预测载荷的正确频率内容。例如,大的砰击载荷的持续时间可能足够短,使得载荷不会简单地传递到地基。此外,结构通常被设计成避免风暴波的自然频率。然而,如果加载发生在基波频率的高次谐波上,这些频率可能与结构的固有频率一致,从而大大增加了它们对设计的重要性。对于结构疲劳评估,需要很长的时间序列。因此,实验和高保真的数值模型是太资源密集型的实际工程计算直接有用。波浪载荷的物理特性通常分为非破碎载荷和破碎载荷。它们有不同的大小和时间尺度,因为它们由不同的物理现象主导。对于非破碎波,传统上Morison方程已被大多数现代设计标准广泛接受为计算海上结构物波浪载荷的起点。对于惯性状态下的细长圆柱体,例如用于离岸风的圆柱体,已对Morison模型进行了扩展,将波浪运动学作为输入。波浪运动学的预测本身就是一项艰巨的任务,特别是对于严重而随机的海况,其中标准规则波流函数理论和二阶随机波理论都是不完善的模型。破碎波是出了名的难以数值模拟和实验测量,由于暴力的流体动力学和缩放问题。已经提出了各种模型来模拟加载的时间历程。然而,在计算动态敏感结构的极端响应和基础反力时,通常只需知道冲击载荷的总施加冲量(以及冲量作用位置),而不是确切的时间历程。估计脉冲更稳健,更快,物理学更容易建模。我们的目标是革命性的载荷计算海洋结构使用新的流体力学开发快速降阶工程模型。虽然这项工作的重点将是研究极端波浪载荷对海上风力涡轮机基础的影响,但产生的想法和工具将更广泛地适用。我们将开发一种计算速度快的方法和一种开源工具,供工业中的执业工程师用于模拟长期循环载荷,从而提高海洋结构物的设计效率,降低施工成本,同时保持功能和可靠性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental study on the interactions between wave groups in double-wave-group focusing
  • DOI:
    10.1063/5.0142042
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Binzhen Zhou;Kanglixi Ding;Jiahao Wang;Lei Wang;P. Jin;T. Tang
  • 通讯作者:
    Binzhen Zhou;Kanglixi Ding;Jiahao Wang;Lei Wang;P. Jin;T. Tang
Transformed-FNV: Wave forces on a vertical cylinder - A free-surface formulation
Transformed-FNV:垂直圆柱体上的波浪力 - 自由表面公式
  • DOI:
    10.1016/j.coastaleng.2024.104454
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Taylor P
  • 通讯作者:
    Taylor P
The influence of directional spreading on rogue waves triggered by abrupt depth transitions
方向传播对突然深度转变引发的异常波的影响
  • DOI:
    10.1017/jfm.2023.737
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tang T
  • 通讯作者:
    Tang T
Estimating space-time wave statistics using a sequential sampling method and Gaussian process regression
使用顺序采样方法和高斯过程回归估计时空波统计量
  • DOI:
    10.1016/j.apor.2022.103127
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Tang T
  • 通讯作者:
    Tang T
Wave loads on ocean infrastructure increase as a result of waves passing over abrupt depth transitions
  • DOI:
    10.1007/s40722-022-00269-4
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Zhenhao Li;T. Tang;Yan Li;S. Draycott;T. S. van den Bremer;T. Adcock
  • 通讯作者:
    Zhenhao Li;T. Tang;Yan Li;S. Draycott;T. S. van den Bremer;T. Adcock
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Zang其他文献

Response of soil particles around bedrock outcrops to sorting of rock surface flow derived outcrops in a rocky desertification area
石漠化地区基岩露头周围土壤颗粒对源于基岩表面流分选露头的响应
  • DOI:
    10.1038/s41598-024-68710-2
  • 发表时间:
    2024-07-29
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jun Zang;Xudong Peng;Quanhou Dai;Dan Yang;Longpei Cen;Tingting Liu
  • 通讯作者:
    Tingting Liu
The Predictive Value of CHA2DS2–VASc Score as a Predictor for Left Ventricular Thrombus After Acute Anterior ST-Elevation Myocardial Infarction: A Case-Control Retrospective Analysis
CHA2DS2–VASc 评分作为急性前壁 ST 段抬高型心肌梗死后左心室血栓的预测因子的预测价值:病例对照回顾性分析
Harmonic Analyses of Hydrodynamic Characteristics for Gap Resonance Between Fixed Box and Vertical Wall
  • DOI:
    DOI: https://doi.org/10.1007/s13344-021-0063-7
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Zhiwei He;Junliang Gao;Hongzhou Chen;Jun Zang;Qian Liu;Gang Wang
  • 通讯作者:
    Gang Wang
Numerical investigation of harbor oscillations induced by focused transient wave groups
  • DOI:
    https://doi.org/10.1016/j.coastaleng.2020.103670
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Junliang Gao;Xiaozhou Ma;Jun Zang;Guohai Dong;Xiaojian Ma;Yazhou Zhu;Li Zhou
  • 通讯作者:
    Li Zhou
Morphological development of drying shrinkage cracks at the rockimg class="glyph" src="https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/16/entities/sbnd" /soil interface in a karst rocky desertification area
喀斯特石漠化地区岩石-土壤界面干燥收缩裂缝的形态发育
  • DOI:
    10.1016/j.ejrh.2024.101894
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Xudong Peng;Changlan Li;Quanhou Dai;Shengbing Xu;Jun Zang
  • 通讯作者:
    Jun Zang

Jun Zang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Zang', 18)}}的其他基金

FROTH: Fundamentals and Reliability of Offshore Structure Hydrodynamics
FROTH:海上结构流体动力学的基础知识和可靠性
  • 批准号:
    EP/J012777/1
  • 财政年份:
    2012
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Research Grant
Nonlinear Wave Loads and Wave Hydrodynamic Effects on Offshore Wind Turbine Foundations
海上风力发电机基础上的非线性波浪载荷和波浪水动力效应
  • 批准号:
    GR/T07220/02
  • 财政年份:
    2007
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Research Grant

相似国自然基金

基于STORM-seq的浙麦冬抗缺血性心肌损伤药效物质基础及时空作用机制研究
  • 批准号:
    D25H280003
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
STORM技术在APPsw过表达细胞DNA折叠压缩程度改变与AD发病机制关系中的研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    12 万元
  • 项目类别:
    专项基金项目
利用STORM和FLIM方法对基因组DNA压缩进行多模态光学表征
  • 批准号:
    61705142
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a flood risk assessment method due to multiple hazards of storm surge, high wave, and river-flow
风暴潮、巨浪、河水多重灾害的洪水风险评估方法的开发
  • 批准号:
    20K05046
  • 财政年份:
    2020
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Future change of storm surge and high wave due to explosive cyclones and development of numerical model
爆发性气旋引起的风暴潮和巨浪的未来变化及数值模型的发展
  • 批准号:
    19K15097
  • 财政年份:
    2019
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Physics of Dune Erosion during Extreme Wave and Storm-Surge Events
合作研究:极端波浪和风暴潮事件期间沙丘侵蚀的物理学
  • 批准号:
    1756477
  • 财政年份:
    2018
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Standard Grant
An Australian storm wave damage and beach erosion early warning system
澳大利亚风暴潮破坏和海滩侵蚀预警系统
  • 批准号:
    LP170100161
  • 财政年份:
    2018
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Linkage Projects
Collaborative Research: Physics of Dune Erosion during Extreme Wave and Storm-Surge Events
合作研究:极端波浪和风暴潮事件期间沙丘侵蚀的物理学
  • 批准号:
    1756449
  • 财政年份:
    2018
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics of Dune Erosion during Extreme Wave and Storm-Surge Events
合作研究:极端波浪和风暴潮事件期间沙丘侵蚀的物理学
  • 批准号:
    1756714
  • 财政年份:
    2018
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Standard Grant
Understanding Storm-Time Electromagnetic Ion Cyclotron (EMIC) Wave Occurrences and Their Relationship to Ground Signatures
了解风暴期间电磁离子回旋加速器 (EMIC) 波的发生及其与地面特征的关系
  • 批准号:
    1547252
  • 财政年份:
    2015
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Continuing Grant
Study on amplification mechanisms of coastal hazard due to tsunami or storm surge combined with high-frequency wave components
海啸或风暴潮结合高频波成分对沿海灾害的放大机制研究
  • 批准号:
    15H04046
  • 财政年份:
    2015
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical methods of estimating return levels from various types of ensemble members of extreme precipitations, wave heights, sea levels due to storm surge, for plans against the natural disasters
估算风暴潮引起的极端降水、波高、海平面的各类集合成员的回波水平的统计方法,用于制定应对自然灾害的计划
  • 批准号:
    26420494
  • 财政年份:
    2014
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding Storm-Time Electromagnetic Ion Cyclotron (EMIC) Wave Occurrences and Their Relationship to Ground Signatures
了解风暴期间电磁离子回旋加速器 (EMIC) 波的发生及其与地面特征的关系
  • 批准号:
    1338221
  • 财政年份:
    2014
  • 资助金额:
    $ 101.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了