Collaborative Research: Physics of Dune Erosion during Extreme Wave and Storm-Surge Events

合作研究:极端波浪和风暴潮事件期间沙丘侵蚀的物理学

基本信息

  • 批准号:
    1756449
  • 负责人:
  • 金额:
    $ 30.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Sand dunes are often the primary and sometimes only 'line of defense' for coastal infrastructure, and are increasingly constructed and actively managed to protect against extreme events. Coastal managers require knowledge of how dunes will respond under these events so assets can be pre-positioned. Both natural and constructed dunes dissipate energy by modifying breaking waves and runup to limit overwash, thereby minimizing coastal flooding during extreme waves and storm-surge events. However, because extreme physical forces only interact with the dune for a relatively short, yet critical time when the water level rises, there is limited understanding on how dune sediments and vegetation can modify hydrodynamic forces and alter beach-dune profile evolution. This research focuses on dune response to a range of water level and forcing conditions that mimic the passage of an extreme storm event. A near prototype-scale laboratory experiment will be conducted over a mobile bed in the large wave flume at Oregon State University. Physical model studies will occur over a bare dune, a rapidly constructed (loosely compacted) dune following wave-induced erosion, and a dune with live vegetation. Data related to processes ranging from short-term (turbulence) to longer time scales (individual events) will be collected and analyzed to develop a fundamental understanding of the fluid-sediment-vegetation dynamics affecting dune stability, as well as damage mitigation strategies for extreme events. The collected data will be used to validate numerical models. A multiphase flow model sedwaveFoam (created in the open-source OpenFOAM framework), capable of simulating the full profiles of sediment transport under realistic waves, will be extended for dune erosion with or without vegetation. Detailed simulations will further inform the creation of improved parameterizations of turbulence- and wave-scale processes in the event-scale morphodynamic model XBeach. A fragility framework, consistent with risk-based decision support tools, will be created to predict the probability of damage states (e.g., dune volume loss) for a given level and duration of hydrodynamic forcing. The collected data and extensive XBeach simulations will provide required input parameters for the fragility analysis. The data and modeling for different dune archetypes will be used to: (i) identify the fundamental processes (including waves, turbulence, and sediment transport) that drive dune evolution during extreme events; (ii) define the conditions by which dune vulnerability increases as function of berm erosion; (iii) investigate the interaction between the different processes and identify the threshold forcing conditions and time scales beyond which vegetation no longer enhances dune resilience; and (iv) examine the extent a fragility modeling framework can be used to improve risk-based decision for dune erosion during extreme surge and wave events. Natural resource managers and practicing engineers with on-the-ground experience, from Federal and State (Delaware, Texas) levels will contribute to this project through a stakeholder workshop planned for year 3. The fragility framework will be developed in collaboration with managers from Delaware and Texas, allowing prediction of dune damage based on commonly used measures of storm intensity. The project will support PhD and undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沙丘通常是沿海基础设施的主要主要,有时只是“防御线”,并且越来越多地结构并积极地设法防止极端事件。沿海经理需要了解沙丘在这些事件下如何做出反应,以便可以预先定位资产。自然和建造的沙丘都通过修改断断续续的波浪和奔跑以限制夸张,从而最大程度地减少在极端海浪和暴风雨事件中的沿海洪水,从而消散了能量。但是,由于极端的物理力仅在水位上升时相对较短但至关重要的时间与沙丘相互作用,因此对沙丘沉积物和植被如何改变流体动力并改变海滩底轮的演变的了解有限。这项研究的重点是对一系列水位的沙丘反应和迫使模仿极端风暴事件的条件。将在俄勒冈州立大学的大波浪水槽中的一张移动床上进行近乎原型规模的实验室实验。物理模型研究将在裸露的沙丘上进行,波浪引起的侵蚀后快速构建(松散压实)沙丘,以及带有活植被的沙丘。将收集和分析与从短期(湍流)到更长的时间尺度(单个事件)的过程相关的数据,以对影响沙丘稳定性的流体 - 补习植被动态发展,以及对极端事件的损害缓解策略。收集的数据将用于验证数值模型。多相流模型Sedwavefoam(在开源式炸药框架中创建),能够在逼真的波浪下模拟沉积物传输的完整曲线,以延伸以延伸,以进行或没有植被的情况。详细的模拟将进一步告知在事件规模的形态动力学模型XBEACH中改善湍流和波尺度过程的参数化。将创建与基于风险的决策支持工具一致的脆弱框架,以预测给定水平的损害状态(例如,沙丘体积损失)的可能性和流体动力强迫的持续时间。收集的数据和广泛的XBEACH模拟将为脆弱性分析提供所需的输入参数。不同的沙丘原型的数据和建模将用于:(i)确定在极端事件中驱动沙丘演化的基本过程(包括波浪,湍流和沉积物传输); (ii)定义沙丘脆弱性随着护理侵蚀的功能而增加的条件; (iii)研究不同过程之间的相互作用,并确定阈值强迫条件和时间尺度,超出了植被不再增强沙丘的韧性; (iv)检查脆弱性建模框架可用于改善在极端激增和波浪事件中基于风险的沙丘侵蚀的决策。来自联邦和州(德克萨斯州特拉华州)级别的自然资源经理和实践工程师将通过计划第3年的利益相关者研讨会为该项目做出贡献。脆弱框架将与特拉华州和德克萨斯州的经理合作开发,从而可以基于常见的风暴强度措施来预测Dune的损害。该项目将支持博士学位和本科生。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating XBeach performance for extreme offshore-directed sediment transport events on a dissipative beach
  • DOI:
    10.1080/21664250.2021.1976452
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Takayuki Suzuki;D. Cox
  • 通讯作者:
    Takayuki Suzuki;D. Cox
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Cox其他文献

STAUBLI TX40 ROBOTS -EARLY STAGES
史陶比尔 TX40 机器人 - 早期阶段
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas R. Waytowich;Andrew Henderson;D. Krusienski;Daniel Cox
  • 通讯作者:
    Daniel Cox
Neurodegenerative damage reduces firing coherence in a continuous attractor model of grid cells.
神经退行性损伤降低了网格细胞连续吸引子模型中的放电相干性。
  • DOI:
    10.1103/physreve.104.044414
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu;Daniel Cox
  • 通讯作者:
    Daniel Cox
Study of non-fusion products in the Ti50+Cf249 reaction
Ti50 Cf249反应中非聚变产物的研究
  • DOI:
    10.1016/j.physletb.2018.07.058
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    A. Nitto;J. Khuyagbaatar;D. Ackermann;L. Andersson;E. Badura;M. Block;H. Brand;I. Conrad;Daniel Cox;C. Düllmann;J. Dvorak;K. Eberhardt;P. A. Ellison;N. Esker;J. Even;C. Fahlander;U. Forsberg;J. Gates;P. Golubev;O. Gothe;K. Gregorich;W. Hartmann;R. Herzberg;F. Heßberger;J. Hoffmann;R. Hollinger;A. Hübner;E. Jäger;B. Kindler;S. Klein;I. Kojouharov;J. V. Kratz;J. Krier;N. Kurz;S. Lahiri;B. Lommel;M. Maiti;R. Mändl;E. Merchán;S. Minami;A. Mistry;C. Mokry;H. Nitsche;J. Omtvedt;G. Pang;D. Renisch;D. Rudolph;J. Runke;L. Sarmiento;M. Schädel;H. Schaffner;B. Schausten;A. Semchenkov;J. Steiner;P. Thörle;N. Trautmann;A. Türler;J. Uusitalo;D. Ward;M. Węgrzecki;P. Wieczorek;N. Wiehl;A. Yakushev;V. Yakusheva
  • 通讯作者:
    V. Yakusheva
Arterial Blood Pressure System Modeling and Signal Analysis
动脉血压系统建模和信号分析
Multi-objective optimization of mitigation strategies for buildings subject to multiple hazards
遭受多种危害的建筑物缓解策略的多目标优化
  • DOI:
    10.1016/j.ijdrr.2023.104125
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Himadri Sen Gupta;Tarun Adluri;Dylan Sanderson;AndresD. Gonzalez;Charles D. Nicholson;Daniel Cox
  • 通讯作者:
    Daniel Cox

Daniel Cox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Cox', 18)}}的其他基金

Collaborative Research: Understanding Hybrid Green-Gray Coastal Infrastructure Processes and Performance Uncertainties for Flood Hazard Mitigation
合作研究:了解混合绿灰色沿海基础设施流程和缓解洪水灾害的性能不确定性
  • 批准号:
    2110439
  • 财政年份:
    2022
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Large Wave Flume and Directional Wave Basin 2021-2025
自然灾害工程研究基础设施:大型波浪水槽和定向波池实验设施2021-2025
  • 批准号:
    2037914
  • 财政年份:
    2021
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Cooperative Agreement
Planning Grant: Engineering Research Center for Adaptive and Resilient Coastal Infrastructure (CARCI)
规划资助:适应性和弹性沿海基础设施工程研究中心(CARCI)
  • 批准号:
    1840652
  • 财政年份:
    2018
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave, Surge, and Tsunami Overland Hazard, Loading and Structural Response for Developed Shorelines
合作研究:波浪、浪涌和海啸陆上灾害、荷载和已开发海岸线的结构响应
  • 批准号:
    1661315
  • 财政年份:
    2017
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Large Wave Flume and Directional Wave Basin
自然灾害工程研究基础设施:大型波浪水槽和定向波池实验设施
  • 批准号:
    1519679
  • 财政年份:
    2016
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Cooperative Agreement
I-Corps: Hybrid Protein Graphene Electrodes for Supercapacitors
I-Corps:用于超级电容器的混合蛋白石墨烯电极
  • 批准号:
    1620998
  • 财政年份:
    2016
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-scale laboratory investigation and numerical modeling of sheet flow sediment transport dynamics across a surf zone sand bar
合作研究:大规模实验室调查和横跨冲浪区沙洲的面流沉积物输运动力学的数值模拟
  • 批准号:
    1356978
  • 财政年份:
    2014
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
ICAM - Institute for Complex Adaptive Matter
ICAM - 复杂自适应物质研究所
  • 批准号:
    1411344
  • 财政年份:
    2014
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Mechanics and Conditional Probabilities for Prediction of Hurricane Surge and Wave Loads on Elevated Coastal Structures
合作研究:预测飓风潮和高架海岸结构波浪载荷的基本力学和条件概率
  • 批准号:
    1301016
  • 财政年份:
    2013
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Dynamical Rigidity Percolation in Microtubule Bundles
微管束中的动态刚性渗透
  • 批准号:
    1207624
  • 财政年份:
    2012
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于人—信息—物理系统的双臂协作机器人安全交互方法研究
  • 批准号:
    52375031
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向物理人机交互的机器人主动安全协作控制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
    52205528
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向物理人机交互的机器人主动安全协作控制方法研究
  • 批准号:
    62203186
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336368
  • 财政年份:
    2024
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336367
  • 财政年份:
    2024
  • 资助金额:
    $ 30.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了