Fully Automated Platforms for Drug Nanocrystals Manufacturing via Continuous-Flow, Data-Driven Antisolvent Crystallization
通过连续流、数据驱动的反溶剂结晶制造药物纳米晶体的全自动平台
基本信息
- 批准号:EP/V050796/1
- 负责人:
- 金额:$ 150.4万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The pharmaceutical industry is undergoing a period of unprecedented change in terms of product development, with increased digitization, greater emphasis on continuous manufacture and the rapid advent of novel therapeutic paradigms, such as personalized medicines, becoming more and more business critical. This change is amplified by Quality by Design considerations and the now routine use of the Target Product Profile approach to the design of patient-centred dosage forms. The recent advances in the range of available therapeutic strategies, alongside the breadth of diseases that can now be successfully treated, has resulted in the need for both new dosage forms and manufacturing approaches. Crucially, there has been a shift from high volume, low cost manufacture towards a more specialized, higher value product development. Consequently, ever more sophisticated approaches, not merely to producing medicinal products, but also to controlling their quality at every stage of the manufacturing process, have become paramount. These would be greatly facilitated by the emerging technologies, based on artificial intelligence and machine learning techniques, for enhancing online process analysis as well as real-time responsive process control. These technologies are particularly important for products where the financial and practical margins for manufacturing error are low, as is the case for an increasing proportion of new therapies.In this proposal, we focus on a new way of screening, manufacturing and quality controlling drugs in the form of nanocrystals, that is, drugs prepared as nanosized crystalline particles stabilized by surface-active agents. In particular, we will combine continuous-flow processing, online advanced process analytical technology, real-time process control and quality assurance, design of experiments, advanced data analysis and artificial intelligence to deliver fully automated, self-optimizing platforms for screening and manufacturing drugs as nanocrystals via antisolvent precipitation. These dosage forms have attracted substantial interest as a means of delivering poorly water-soluble (and thus poorly bioavailable) drugs, a persistent and increasing problem for the pharmaceutical industry.While nanocrystals offer a suitable test system for our approach, our methodology and the manufacturing platform we intend to deliver can be applied to other drug delivery systems. We focus on nanocrystals because they are of considerable therapeutic and commercial significance both nationally and internationally.We intend to use continuous-flow small-scale (i.e. millifluidic) systems. These offer excellent process controllability, can generate crystals of nearly uniform size, and as the process is continuous, the product characteristics are more stable than in batch systems. Millifluidic systems are flexible (one platform can produce a larger variety of products) and agile - reacting rapidly to changes in market demands; they reduce the manufacturing time, speed up the supply chain and, being smaller, can be portable. These systems also expedite screening, curtailing the quantities of material required, benefits that design of experiments will amplify. This data-driven technique allows identifying the most informative experiments, maximizing learning while minimizing time and costs, advantages not fully exploited by the pharmaceutical industry. These technologies, coupled with online advanced process analytical methods, real-time process control, cutting-edge data analysis and machine learning methods, have the potential to disrupt the status quo, accelerate process development and deliver transformative platforms for the cost-effective and sustainable manufacturing of active pharmaceutical ingredients in solid dosage form, reducing the timeline from drug discovery to patient, and contributing to placing the UK at the forefront of innovation in the pharmaceutical sector.
制药行业正在经历一个前所未有的产品开发变革时期,数字化程度的提高,对连续生产的重视程度的提高,以及个性化药物等新型治疗模式的迅速出现,变得越来越重要。这种变化被设计质量考虑和现在常规使用目标产品概况方法来设计以患者为中心的剂型放大。现有治疗策略范围的最近进展,以及现在可以成功治疗的疾病的广度,导致需要新的剂型和制造方法。至关重要的是,已经从大批量、低成本的制造转向更专业化、更高价值的产品开发。因此,越来越复杂的方法,不仅是生产药品,而且在生产过程的每个阶段控制其质量,已经变得至关重要。基于人工智能和机器学习技术的新兴技术将大大促进这些工作,以加强在线过程分析和实时响应过程控制。这些技术对于制造错误的财务和实际利润较低的产品尤其重要,因为新疗法的比例越来越大。在本课题中,我们重点研究了一种以纳米晶体形式筛选、制造和质量控制药物的新方法,即通过表面活性剂稳定的纳米级晶体颗粒制备药物。特别是,我们将结合连续流程处理、在线先进过程分析技术、实时过程控制和质量保证、实验设计、先进数据分析和人工智能,提供全自动化、自优化的平台,通过抗溶剂沉淀法筛选和制造纳米晶体药物。这些剂型作为递送水溶性差(因而生物利用度差)药物的手段引起了极大的兴趣,这是制药工业持续存在且日益严重的问题。虽然纳米晶体为我们的方法提供了合适的测试系统,但我们的方法和我们打算提供的制造平台可以应用于其他药物输送系统。我们专注于纳米晶体,因为它们在国内和国际上都具有相当大的治疗和商业意义。我们打算使用连续流小规模(即毫流)系统。这些提供了良好的过程可控性,可以产生几乎均匀大小的晶体,并且由于过程是连续的,产品特性比批处理系统更稳定。微流控系统灵活(一个平台可以生产更多种类的产品)和敏捷——对市场需求的变化做出快速反应;它们缩短了制造时间,加快了供应链,而且体积更小,便于携带。这些系统还加快了筛选,减少了所需材料的数量,实验设计将放大这些好处。这种数据驱动的技术允许识别最具信息量的实验,在最大限度地减少时间和成本的同时最大限度地学习,这是制药行业尚未充分利用的优势。这些技术与在线先进工艺分析方法、实时工艺控制、尖端数据分析和机器学习方法相结合,有可能打破现状,加速工艺开发,并为固体剂型活性药物成分的成本效益和可持续生产提供变革性平台,缩短从药物发现到患者的时间。并为将英国置于制药行业创新的前沿做出贡献。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-fouling flow reactors for nanomaterial synthesis
- DOI:10.1039/d2re00412g
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:M. Besenhard;Sayan Pal;G. Gkogkos;A. Gavriilidis
- 通讯作者:M. Besenhard;Sayan Pal;G. Gkogkos;A. Gavriilidis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Mazzei其他文献
On the linear viscoelastic behavior of semidilute polydisperse bubble suspensions in Newtonian media
牛顿介质中半稀多分散气泡悬浮液的线性粘弹性行为
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.3
- 作者:
Stamatina Mitrou;S. Migliozzi;Luca Mazzei;P. Angeli - 通讯作者:
P. Angeli
On the apparent dispersion coefficient of the equilibrium dispersion model: An asymptotic analysis
关于平衡弥散模型的视在弥散系数:渐近分析
- DOI:
10.1016/j.chroma.2023.464345 - 发表时间:
2023-10-11 - 期刊:
- 影响因子:4.000
- 作者:
Konstantinos Katsoulas;Monica Tirapelle;Eva Sorensen;Luca Mazzei - 通讯作者:
Luca Mazzei
In-silico method development and optimization of on-line comprehensive two-dimensional liquid chromatography via a shortcut model.
通过快捷模型进行在线综合二维液相色谱的计算机方法开发和优化。
- DOI:
10.1016/j.chroma.2024.464818 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. Tirapelle;D. N. Chia;F. Duanmu;Maximilian O. Besenhard;Luca Mazzei;Eva Sorensen - 通讯作者:
Eva Sorensen
Modelling plasticiser loss inside closed environments
- DOI:
10.1016/j.polymdegradstab.2022.110204 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Argyro Gili;Isabella del Gaudio;Rose King;Luca Mazzei;Katherine Curran - 通讯作者:
Katherine Curran
Metal selectivity and translocation mechanism characterization in proteoliposomes of the transmembrane NiCoT transporter NixA from emHelicobacter pylori/em
幽门螺杆菌跨膜 NiCoT 转运蛋白 NixA 在蛋白脂质体中的金属选择性和转运机制表征
- DOI:
10.1039/d3sc05135h - 发表时间:
2024-01-03 - 期刊:
- 影响因子:7.400
- 作者:
Jayoh A. Hernandez;Paul S. Micus;Sean Alec Lois Sunga;Luca Mazzei;Stefano Ciurli;Gabriele Meloni - 通讯作者:
Gabriele Meloni
Luca Mazzei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Automated reactor platforms for accelerated discovery of next generation polymers
用于加速发现下一代聚合物的自动化反应器平台
- 批准号:
2911012 - 财政年份:2024
- 资助金额:
$ 150.4万 - 项目类别:
Studentship
Automated cell sorting platforms using Al-assisted Raman spectroscopy
使用铝辅助拉曼光谱的自动化细胞分选平台
- 批准号:
2889028 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Studentship
SBIR Phase I: Precision Docking for Automated Charging of Unmanned Platforms and Electric Vehicles
SBIR第一期:无人平台和电动汽车自动充电精准对接
- 批准号:
2230483 - 财政年份:2023
- 资助金额:
$ 150.4万 - 项目类别:
Standard Grant
Development of automated imaging and spectroscopic cell sorting platforms for research into cancer and metabolic diseases
开发用于癌症和代谢疾病研究的自动成像和光谱细胞分选平台
- 批准号:
2606761 - 财政年份:2021
- 资助金额:
$ 150.4万 - 项目类别:
Studentship
SaTC: CORE: Small: Collaborative: Enabling Precise and Automated Insecurity Analysis of Middleware on Mobile Platforms
SaTC:核心:小型:协作:实现移动平台上中间件的精确和自动不安全分析
- 批准号:
1856380 - 财政年份:2018
- 资助金额:
$ 150.4万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Enabling Precise and Automated Insecurity Analysis of Middleware on Mobile Platforms
SaTC:核心:小型:协作:实现移动平台上中间件的精确和自动不安全分析
- 批准号:
1814679 - 财政年份:2018
- 资助金额:
$ 150.4万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Enabling Precise and Automated Insecurity Analysis of Middleware on Mobile Platforms
SaTC:核心:小型:协作:实现移动平台上中间件的精确和自动不安全分析
- 批准号:
1815144 - 财政年份:2018
- 资助金额:
$ 150.4万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Enabling Precise and Automated Insecurity Analysis of Middleware on Mobile Platforms
SaTC:核心:小型:协作:实现移动平台上中间件的精确和自动不安全分析
- 批准号:
1815045 - 财政年份:2018
- 资助金额:
$ 150.4万 - 项目类别:
Standard Grant
HIGH THROUGHPUT BIODOSIMETRY USING A FULLY AUTOMATED DICENTRIC ASSAY ON COMMERCIAL HIGH-CONTENT SCREENING PLATFORMS
在商业高内涵筛选平台上使用全自动双着丝粒测定进行高通量生物剂量测定
- 批准号:
9365080 - 财政年份:2016
- 资助金额:
$ 150.4万 - 项目类别:
Application of a Generative Grammar for the Automated Architectural Exploration of Digital System-on-Chip (SoC) Platforms
生成语法在数字片上系统 (SoC) 平台自动架构探索中的应用
- 批准号:
231839943 - 财政年份:2013
- 资助金额:
$ 150.4万 - 项目类别:
Research Grants














{{item.name}}会员




