Project 1: Streamlined identification of PAHs/PACs in environmental samples using ultracompact spectroscopy platforms and machine learning strategies
项目 1:使用超紧凑光谱平台和机器学习策略简化环境样品中 PAH/PAC 的识别
基本信息
- 批准号:10116392
- 负责人:
- 金额:$ 27.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-28 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAirAlgorithmsAluminumAromatic CompoundsAromatic Polycyclic HydrocarbonsBiologicalBiomimeticsCarcinogensChemicalsChronic lung diseaseClassificationClinicClinicalComplexComplex MixturesDetectionDevelopmentDevicesElectromagneticsEvaluationExposure toFamilyGeometryGoalsGoldHealthHealth HazardsHumanHydroxyl RadicalLaboratoriesLibrariesLiquid substanceMachine LearningManualsMass FragmentographyMethodsModelingMolecularMolecular StructureMonitorMutagensNanostructuresNeurocognitive DeficitOpticsOutcomeParentsPatient MonitoringPolymersPopulationPremature BirthPreparationPreventionRaman Spectrum AnalysisResearchRiskRisk AssessmentSamplingSignal TransductionSiliconSilverSoilSpectrum AnalysisStructureSurfaceTechniquesTechnologyTestingTimeTrainingVariantWaterWorkabsorptionadhesive protein (mussel)air samplingautomated algorithmbaseconvolutional neural networkcostdesigndetection limitdetection methoddetection platformdetection sensitivitydetection testdetectorearly life exposureenhancing factorexposed human populationhazardimprovedinfrared spectroscopyinnovationinstrumentationinterestlearning algorithmlearning strategymachine learning algorithmmetallicitymodel developmentmonolayernanoengineeringnanofabricationnanoparticlenanosensorsnovel strategiesprototyperemediationresponsesoil samplingsuperfund sitetoolvibrationwater samplingwaterborne
项目摘要
Project Summary
Exposure to polycyclic aromatic hydrocarbons (PAHs) and associated polycyclic aromatic compounds
(PACs) has long been identified with a large number of human health risks. PAHs are well-known carcinogens
and mutagens. Current analytical techniques for detection of PAHs and PAC are laboratory based, slow,
complex, and require expensive instrumentation and sample preparation. We propose an entirely new approach
combining optical spectroscopic techniques such as Surface Enhanced Raman Spectroscopy (SERS) and
Surface Enhanced Infrared Absorption (SEIRA). These techniques can also be combined onto a single
nanoengineered substrate, designed to sensitively identify specific PACs. While these techniques have been
demonstrated successfully using gold and silver based nanoparticles and nanoengineered substrates, we
propose to expand these techniques using inexpensive and environmentally friendly Aluminum nanoengineered
substrates for streamlined ultrasensitive PAH and PAC detection. This platform will utilize polydopamine, a
biomimetic polymer inspired by mussel adhesive proteins, as coatings for molecular partitioning, selectively
extracting and adsorbing PAH and PAC molecules from samples of interest onto the nanosensing substrates. In
preliminary results, this approach has yielded sub-ppb detection sensitivities for PAH molecules extracted from
liquid samples. Furthermore we propose to design and demonstrate a new type of chemical detector that can
be fully integrated with SERS and/or SEIRA substrates, to directly generate an electrical signal in response to
the spectrum of the PAH and PAC molecules. This would eliminate the need for bulky and expensive
monochromators and dispersive optics, ultimately allowing for the design of ultracompact, “on-chip” detectors
that can be deployed in the field at superfund sites and in the clinic. Prototypes of this type of direct spectral
detector have recently been demonstrated by our group. We will also address one of the primary problems
universal to analyte detection and analysis, the detection of chemical mixtures, likely to be found under actual
field sampling conditions, by applying a machine learning approach. We propose to develop machine learning
algorithms that automatically analyze the spectra of multicomponent samples, trained to identify with high
accuracy and precision their PAH and PAC components. The ultimate outcome of this project is the creation of
a streamlined, ultracompact, ultrasensitive chemical analysis and detection platform, capable of identifying
multiple PAHs and PACs in a single sample without costly separation and purification steps, which could be
readily transitioned to fieldable use.
项目摘要
接触多环芳烃和相关的多环芳烃化合物
(PAC)长期以来被确定具有大量的人类健康风险。多环芳烃是众所周知的致癌物质
和诱变剂。目前用于检测多环芳烃和PAC的分析技术是基于实验室的,缓慢,
复杂,并且需要昂贵的仪器和样品制备。我们提出了一个全新的方法
结合光学光谱技术如表面增强拉曼光谱(Sers)和
表面增强红外吸收(SEIRA)这些技术也可以结合到一个单一的
纳米工程基板,旨在灵敏地识别特定的PAC。虽然这些技术已经
成功地证明了使用金和银基纳米粒子和纳米工程基板,我们
我建议扩大这些技术使用廉价和环境友好的铝纳米工程
用于流线型超灵敏PAH和PAC检测的基质。该平台将利用聚多巴胺,
仿生聚合物的灵感来自贻贝粘附蛋白,作为涂层的分子分配,选择性
从感兴趣的样品中提取PAH和PAC分子并将其吸附到纳米传感基底上。在
初步结果,这种方法已经产生了亚ppb的检测灵敏度为PAH分子提取,
液体样品。此外,我们建议设计和演示一种新型的化学探测器,
与Sers和/或SEIRA基底完全集成,以响应于
PAH和PAC分子的光谱。这将消除对笨重和昂贵的
单色器和色散光学器件,最终允许设计超紧凑的“片上”检测器
可以部署在超级基金现场和诊所。这种类型的直接光谱的原型
我们小组最近演示了一个探测器。我们还将解决一个主要问题,
通用于分析物的检测和分析,检测化学混合物,在实际中可能发现
现场采样条件,通过应用机器学习方法。我们建议发展机器学习
自动分析多组分样品光谱的算法,经过训练,
PAH和PAC成分的准确度和精密度。该项目的最终成果是创建
一个流线型、超紧凑、超灵敏的化学分析和检测平台,能够识别
在单一样品中检测多种PAH和PAC,无需昂贵的分离和纯化步骤,
易于转换为现场使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAOMI HALAS其他文献
NAOMI HALAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAOMI HALAS', 18)}}的其他基金
Project 1: Streamlined identification of PAHs/PACs in environmental samples using ultracompact spectroscopy platforms and machine learning strategies
项目 1:使用超紧凑光谱平台和机器学习策略简化环境样品中 PAH/PAC 的识别
- 批准号:
10559694 - 财政年份:2020
- 资助金额:
$ 27.2万 - 项目类别:
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Development of algorithms to optimize urban forestry for climate change and air pollution mitigation
开发优化城市林业以应对气候变化和空气污染的算法
- 批准号:
469896-2014 - 财政年份:2014
- 资助金额:
$ 27.2万 - 项目类别:
Engage Grants Program
CAREER: Practical Algorithms for Next Generation Air Transportation Systems
职业:下一代航空运输系统的实用算法
- 批准号:
0745237 - 财政年份:2008
- 资助金额:
$ 27.2万 - 项目类别:
Standard Grant
EFRI-ARESCI: Theory and Algorithms for Autonomous Reconfigurability of the National Air Transportation System
EFRI-ARESCI:国家航空运输系统自主重构的理论和算法
- 批准号:
0735905 - 财政年份:2007
- 资助金额:
$ 27.2万 - 项目类别:
Standard Grant
Real-time energy management control algorithms for heating, ventilating and air conditioning systems
适用于供暖、通风和空调系统的实时能源管理控制算法
- 批准号:
36380-2002 - 财政年份:2006
- 资助金额:
$ 27.2万 - 项目类别:
Discovery Grants Program - Individual
Diagnostic algorithms for air brakes in trucks: Theory and experiments
卡车空气制动器的诊断算法:理论与实验
- 批准号:
0556343 - 财政年份:2006
- 资助金额:
$ 27.2万 - 项目类别:
Standard Grant
Real-time energy management control algorithms for heating, ventilating and air conditioning systems
适用于供暖、通风和空调系统的实时能源管理控制算法
- 批准号:
36380-2002 - 财政年份:2005
- 资助金额:
$ 27.2万 - 项目类别:
Discovery Grants Program - Individual
Real-time energy management control algorithms for heating, ventilating and air conditioning systems
适用于供暖、通风和空调系统的实时能源管理控制算法
- 批准号:
36380-2002 - 财政年份:2004
- 资助金额:
$ 27.2万 - 项目类别:
Discovery Grants Program - Individual
air cushion vehicle bag and finger skirt optimization using genetic algorithms
使用遗传算法优化气垫车包和指裙
- 批准号:
227747-2001 - 财政年份:2003
- 资助金额:
$ 27.2万 - 项目类别:
Discovery Grants Program - Individual
Real-time energy management control algorithms for heating, ventilating and air conditioning systems
适用于供暖、通风和空调系统的实时能源管理控制算法
- 批准号:
36380-2002 - 财政年份:2003
- 资助金额:
$ 27.2万 - 项目类别:
Discovery Grants Program - Individual
air cushion vehicle bag and finger skirt optimization using genetic algorithms
使用遗传算法优化气垫车包和指裙
- 批准号:
227747-2001 - 财政年份:2002
- 资助金额:
$ 27.2万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




