AIOLOS: Artificial Intelligence powered framework for OnLine prOduction Scheduling
AIOLOS:人工智能驱动的在线生产调度框架
基本信息
- 批准号:EP/V051008/1
- 负责人:
- 金额:$ 106.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The chemical industry in the UK plays a vital role in the nation's economy with a total annual turnover of £50 billion. To remain competitive both regionally and globally, optimisation-based scheduling methods are often applied to achieve a significant increase in process profit, reduction in energy cost, improvement in the efficiency of inventory management, and enhanced customer satisfaction. However, frequent disruptions such as demand fluctuation, rush order arrivals, due date changes, and equipment malfunction are unavoidable in chemical manufacturing. When these disruptions are present, a pre-determined optimal schedule can become suboptimal or even infeasible. With the use of heuristic-based reactive scheduling methods in response to frequent disruptions, the UK chemical industry loses an estimated profit in the order of hundreds of millions of pounds every year. The existing optimisation-based scheduling methods either require high computational expense to generate a schedule, thus rendering them incapable of managing unexpected disruptions in online scheduling; or directly use poor heuristics or knowledge for fast decision-making which usually leads to a conservative schedule resulting in significant financial losses. More importantly, these methods cannot effectively accommodate certain disruptions such as equipment malfunction and rush order arrivals that often occur in online scheduling, restricting their potential application.This research will deliver a next generation autonomous online scheduling framework in response to different types of disruptions in the chemical manufacturing industry. The framework will generate high-quality dispatching rules to provide optimal or near-optimal online scheduling solutions for emerging uncertainties in a timely manner (e.g., < 5 minutes) through integration of novel machine learning techniques and robust mathematical programming approaches. This will also allow for the identification of a solution to minimise energy consumption. The research will be addressed via a seamless collaboration between The University of Manchester and University College London with expertise in process systems engineering and machine learning. The proposed framework will be tested in close interactions with industrial partners in the UK and China. The improvement in profit is expected to be at least 3% and potentially up to 15%, corresponding to an estimated annual increase in profit between £70 million and £320 million for the UK chemical industry.
英国的化学工业在国家经济中发挥着至关重要的作用,年营业额为500亿英镑。为了保持区域和全球的竞争力,通常应用基于优化的调度方法来实现过程利润的显著增加、能源成本的降低、库存管理效率的提高以及客户满意度的提高。然而,在化工生产过程中,需求波动、紧急订单到达、交货期变更和设备故障等频繁的中断是不可避免的。当这些中断存在时,预先确定的最优调度可能变得次优甚至不可行。随着使用基于敏捷的反应调度方法来应对频繁的中断,英国化学工业每年损失的利润估计高达数亿英镑。现有的基于优化的调度方法要么需要很高的计算费用来生成一个时间表,从而使他们无法管理意外的中断在线调度;或直接使用穷人的知识或快速决策,这通常会导致一个保守的时间表,导致重大的财务损失。更重要的是,这些方法不能有效地适应某些中断,如设备故障和紧急订单的到来,经常发生在在线调度,限制其潜在的应用。该框架将生成高质量的调度规则,以便及时为新出现的不确定性提供最佳或接近最佳的在线调度解决方案(例如,< 5分钟),通过整合新颖的机器学习技术和强大的数学编程方法。这也将允许识别解决方案,以最大限度地减少能源消耗。该研究将通过曼彻斯特大学和伦敦大学学院之间的无缝合作来解决,并在过程系统工程和机器学习方面拥有专业知识。拟议的框架将在与英国和中国的工业合作伙伴的密切互动中进行测试。利润的改善预计至少为3%,可能高达15%,相当于英国化学工业的利润估计每年增加7000万英镑至3.2亿英镑。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stable optimisation-based scenario generation via game theoretic approach
- DOI:10.1016/j.compchemeng.2024.108646
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Georgios L. Bounitsis;L. Papageorgiou;Vassilis M. Charitopoulos
- 通讯作者:Georgios L. Bounitsis;L. Papageorgiou;Vassilis M. Charitopoulos
Data-driven scenario generation for two-stage stochastic programming
- DOI:10.1016/j.cherd.2022.08.014
- 发表时间:2022-08
- 期刊:
- 影响因子:3.9
- 作者:Georgios L. Bounitsis;L. Papageorgiou;Vassilis M. Charitopoulos
- 通讯作者:Georgios L. Bounitsis;L. Papageorgiou;Vassilis M. Charitopoulos
An Open-Source Simulation Model for Solving Scheduling Problems
解决调度问题的开源仿真模型
- DOI:10.13189/ujam.2022.100201
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Teymourifar A
- 通讯作者:Teymourifar A
33rd European Symposium on Computer Aided Process Engineering
第33届欧洲计算机辅助过程工程研讨会
- DOI:10.1016/b978-0-443-15274-0.50255-9
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Marousi A
- 通讯作者:Marousi A
Learning and Intelligent Optimization - 17th International Conference, LION 17, Nice, France, June 4-8, 2023, Revised Selected Papers
学习与智能优化 - 第 17 届国际会议,LION 17,法国尼斯,2023 年 6 月 4-8 日,修订后的精选论文
- DOI:10.1007/978-3-031-44505-7_2
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liapis G
- 通讯作者:Liapis G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JIE LI其他文献
Present-Day Strike-Slip Faulting and Thrusting of the Kepingtage Fold-and-Thrust Belt in Southern Tianshan: Constraints From GPS Observations
南天山柯坪塔格褶皱逆冲带现今走滑断层与逆冲作用:GPS观测的制约
- DOI:
10.1029/2022gl099105 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
JIE LI;Yuan Yao;Rui Li;Sulitan Yusan;Guirong Li;Jeffrey T. Freymueller;Qi Wang - 通讯作者:
Qi Wang
A Taxonomic Revision of Fern Genus Pseudocyclosorus (Thelypteridaceae) from China and the Pan-Himalaya Region, with Special Reference to the Identity of Pseudocyclosorus stramineus
中国和泛喜马拉雅地区蕨类植物Pseudocyclosorus(Thelypteridaceae)的分类学修订,特别是Pseudocyclosorus stramineus的身份
- DOI:
10.11646/phytotaxa.424.4.1 - 发表时间:
2019-11 - 期刊:
- 影响因子:1.1
- 作者:
ZHONG-YANG LI;XIAN-CHUN ZHANG;ZHEN-LONG LIANG;JIE LI - 通讯作者:
JIE LI
Can plastid genome sequencing be used for species identification in the Lauraceae?
质体基因组测序可以用于樟科植物的物种鉴定吗?
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
ZHI-FANG LIU;HUI MA;XIU-QIN CI;LANG LI;YU SONG;BING LIU;HSI-WEN LI;SHU-LI WANG;XIAO-JIAN QU;JIAN-LIN HU;XIAO-YAN ZHANG;JOHN G. CONRAN;ALEX D. TWYFORD;JUN-BO YANG;PETER M. HOLLINGSWORTH;JIE LI - 通讯作者:
JIE LI
Rupture characteristics of the 25 November 2016 Akteoearthquake (Mw6.6) in eastern Pamir revealed by GPS and teleseismic data
GPS和远震资料揭示的2016年11月25日帕米尔东部地震(Mw6.6)的破裂特征
- DOI:
10.1007/s00024-018-1798-9 - 发表时间:
2018 - 期刊:
- 影响因子:2
- 作者:
JIE LI;GANG LIU;XUEJUN QIAO - 通讯作者:
XUEJUN QIAO
The Crustal Deformation Revealed by GPS and InSAR in the Northwest Corner of the Tarim Basin, Northwestern China
GPS和InSAR揭示的塔里木盆地西北角地壳形变
- DOI:
10.1007/s00024-017-1473-6 - 发表时间:
2017-01 - 期刊:
- 影响因子:0
- 作者:
XUEJUN QIAO;PENFEI YU;ZHAOSHENG NIE;JIE LI - 通讯作者:
JIE LI
JIE LI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JIE LI', 18)}}的其他基金
CAREER: Enzymatic Sulfur Incorporation and Modification in the Biosynthesis of Natural Products
职业:天然产物生物合成中的酶促硫掺入和修饰
- 批准号:
2239561 - 财政年份:2023
- 资助金额:
$ 106.18万 - 项目类别:
Continuing Grant
Development and Demonstration of an Effective Optimisation Approach for Large-scale Chemical Production Scheduling
大规模化工生产调度有效优化方法的开发和示范
- 批准号:
EP/T03145X/1 - 财政年份:2021
- 资助金额:
$ 106.18万 - 项目类别:
Research Grant
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 106.18万 - 项目类别:
Fellowship














{{item.name}}会员




