Dynamic physicochemical nanoscale imaging at the solid-liquid interface

固液界面动态物理化学纳米级成像

基本信息

  • 批准号:
    EP/V053884/1
  • 负责人:
  • 金额:
    $ 149.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Raman spectroscopy is an invaluable analytical tool for materials characterisation, providing essential information on the structure, chemical composition and local environment of molecules using the diagnostic fingerprint that the vibrational spectrum uniquely delivers. It is applied almost ubiquitously across the engineering, physical and life sciences, enabling analysis of molecular materials in their native state (regardless of the physical state of matter or environment), in the absence of labels or preparation procedures, in a non-invasive and non-destructive fashion. It does, however, suffer from two significant limitations: (i) low sensitivity, a result of the weakness of the Raman effect, where very few incident photons can be harnessed to generate information on vibrational structure, and; (ii) spatial resolution limited by the laws of optical diffraction. This places fundamental restrictions on the breadth of materials that can be examined, and the absolute precision with which information can be obtained in those that can. Necessitated by the comprehension that the principle functions of materials are governed by characteristics and phenomena that arise in molecular structures at the nanoscale, significant developments in the technology of Raman spectroscopy was warranted and an innovative approach - termed tip-enhanced Raman spectroscopy (TERS) - was consequently established. In TERS, a scanning probe microscopy (SPM) tip is illuminated with a laser at the natural plasmon frequency of the noble metal nanoparticle that resides at the tip apex. This creates a high-intensity electromagnetic field in the immediate vicinity of the SPM tip, and as such provides a new mechanism for high-sensitivity imaging of molecular materials at the nanometre length scale. Yet, to date, and for reasons of prior technical inadequacies of commercial instrumentation, its application has been largely restricted to analysis of solid surfaces in air at standard conditions of temperature and pressure. Thus, whilst TERS has effectively solved the fundamental deficiencies inherent to Raman spectroscopy, it has essentially failed to translate the highly desirable aspects of the parent technique, thus placing a significant barrier to its application for important materials science discoveries. To address this critical issue, we aim to pioneer an innovative nanoscale imaging capability, comprising optically-coupled SPM and Raman spectroscopy, and uniquely configured for the first time with dual optical access, multiple SPM functionalities and custom-made stages and liquid cells for environmental control. Designated DCI-TERS, our cutting-edge analytical platform will enable chemical fingerprint imaging of molecular materials significantly below the diffraction limit (<10 nm spatial resolution) for sampling both liquids and solids, with near-single-molecule-level sensitivity, along with 3D topographical analysis, acquired simultaneously from a single location (Tip-Enhanced Raman Spectroscopy). The incorporation of full performance SPM modes extends the breadth of surface physical characteristics obtainable from a single nanoscale volume (Correlative Imaging), whilst first-time provisions for environmental control stands to revolutionise in situ and operando investigations of chemical transformations at the gas-solid and liquid-solid interfaces, in response to light, heat and electrical potential (Dynamic Imaging). Thus, DCI-TERS represents an innovative methodology for temporally-resolved and location-correlated imaging of molecular materials and will deliver new fundamental knowledge on surface physicochemical (mechanical, electrical, thermal, structural compositional) properties under relevant conditions and at the nanoscale level, applicable to a broad spectrum of material research programmes, from drug delivery and medical devices to optoelectronics and batteries.
拉曼光谱法是用于材料表征的宝贵分析工具,使用诊断指纹提供了有关分子的结构,化学成分和局部环境的重要信息,该指纹振动频谱独特提供。它几乎普遍存在在工程,物理和生命科学中,在没有标签或制备程序的情况下,以非侵入性和无毁灭性的方式对分子材料(无论物质或环境的物理状态如何)进行分析。但是,它确实遭受了两个重要的局限性:(i)低灵敏度,是拉曼效应的弱点的结果,在这种情况下,很少有入射光子可以利用以生成有关振动结构的信息,并且; (ii)由光学衍射定律有限的空间分辨率。这对可以检查的材料的广度进行了基本限制,以及可以在其中可以获得信息的绝对精度。理解材料的原理功能受到纳米级分子结构中产生的特征和现象的理解所需要的,因此确定了拉曼光谱技术的重大发展,并建立了一种创新的方法,称为创新的方法 - 增强的拉曼光谱(TERS)。在TERS中,扫描探针显微镜(SPM)尖端在位于尖端顶点的贵金属纳米颗粒的天然等离子频率处用激光照亮。这在SPM尖端的附近创建了高强度的电磁场,因此为在纳米长度尺度上对分子材料进行高敏性成像的新机制提供了新的机制。然而,迄今为止,出于事先技术不足的商业仪器的原因,其应用很大程度上仅限于在标准的温度和压力条件下对空气中的固体表面的分析。因此,尽管TERS有效地解决了拉曼光谱固有的基本缺陷,但它基本上未能转化父级技术的高度理想方面,从而为其在重要材料科学发现的应用中带来了重大障碍。为了解决这个关键问题,我们的目标是先驱创新的纳米级成像能力,包括光学耦合的SPM和拉曼光谱,并首次使用双重光学访问,多个SPM功能,定制阶段以及以环境控制的液体阶段和液体单元格进行了唯一配置。指定的dciTer,我们的尖端分析平台将使分子材料的化学指纹成像显着低于衍射极限(<10 nm的空间分辨率),用于对液体和固体进行取样,并具有近距离分子级别的敏感性,并从单个位置分析(同时获得tip raman)。完整性能SPM模式的结合扩展了可从单个纳米级体积(相关成像)获得的表面物理特性的广度,而环境控制的首次准备就绪构成了对气体 - 固体和液体固体接口的原位和操作的化学转化调查,以响应光,热量和电势(动力学)。因此,dci-ters代表了一种创新的方法,用于分子材料的时间分辨和与位置相关的成像,并将在相关条件下以及适用于材料研究和医学研究的纳米级,在相关条件下以及适用于纳米级的纳米级,在相关条件下以及在纳米级中提供有关表面物理化学(机械,电气,热,热,结构组成)特性的新基本知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mike George其他文献

Global needs for nitrogen fertilizer to improve wheat yield under climate change.
气候变化下全球需要氮肥来提高小麦产量。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    18
  • 作者:
    Pierre Martre;Sibylle Dueri;J. Guarin;Frank Ewert;H. Webber;Daniel Calderini;Gemma Molero;Matthew Reynolds;Daniel Miralles;Guillermo Garcia;Hamish Brown;Mike George;R. Craigie;J. Cohan;Jean;Gustavo Slafer;Francesco Giunta;Davide Cammarano;R. Ferrise;Thomas Gaiser;Yujing Gao;Z. Hochman;G. Hoogenboom;L. Hunt;K. Kersebaum;C. Nendel;G. Padovan;A. Ruane;A. Srivastava;T. Stella;I. Supit;Peter J. Thorburn;Enli Wang;Joost Wolf;Chuang Zhao;Zhigan Zhao;S. Asseng
  • 通讯作者:
    S. Asseng

Mike George的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mike George', 18)}}的其他基金

Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
  • 批准号:
    EP/Z53299X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
Photo-Electro: Transforming Chemical Synthesis, Discovery and Manufacture
光电:改变化学合成、发现和制造
  • 批准号:
    EP/P013341/1
  • 财政年份:
    2017
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
Centre for Digital Copyright and Intellectual Property Research in China
中国数字版权与知识产权研究中心
  • 批准号:
    AH/N504300/1
  • 财政年份:
    2014
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
Topological Engineering Translation Grant
拓扑工程翻译补助金
  • 批准号:
    EP/H007210/1
  • 财政年份:
    2010
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
The Role of Nonstatistical Dynamics in the Chemistry of Reactive Intermediates
非统计动力学在反应中间体化学中的作用
  • 批准号:
    EP/G013330/1
  • 财政年份:
    2009
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
Carbon Dioxide and Alkanes as Electron-sink and Source in a Solar Nanocell: towards Tandem Photosynthesis of Carbon Monoxide and Methanol
二氧化碳和烷烃作为太阳能纳米电池中的电子沉和源:一氧化碳和甲醇的串联光合作用
  • 批准号:
    EP/F047789/1
  • 财政年份:
    2008
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
Unravelling the photochemistry of organometallic N-heterocyclic carbene complexes
揭示有机金属N-杂环卡宾配合物的光化学
  • 批准号:
    EP/F000650/1
  • 财政年份:
    2007
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
NMR and IR Studies of Activation of Small Molecules by Organometallic Complexes
有机金属配合物活化小分子的核磁共振和红外研究
  • 批准号:
    EP/D058031/1
  • 财政年份:
    2006
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant

相似国自然基金

基于冕芳烃的长度可调分子管柱合成及其主客体作用物理化学机制研究
  • 批准号:
    22371241
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
聚合物吸水行为与其物理化学、力学及摩擦学性能之间的关系研究
  • 批准号:
    52375198
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
考虑物理化学效应的膨胀土失水收缩微观机理及本构模拟
  • 批准号:
    42307236
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
星际消光与星际物理化学环境
  • 批准号:
    12373024
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
磁场影响大气压脉冲介质阻挡放电产物特性的物理化学机制研究
  • 批准号:
    52307160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ultra-sensitive electrochemical detection of neurotransmitters based on nanoscale adsorption phenomena
基于纳米级吸附现象的神经递质超灵敏电化学检测
  • 批准号:
    20K20534
  • 财政年份:
    2020
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Theoretical search for the optimum condition of super-resolution effects with the formation of nanoscale optical windows
纳米级光学窗口形成超分辨率效应最佳条件的理论探索
  • 批准号:
    15K04702
  • 财政年份:
    2015
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physicochemical processes at interfaces leading to nanoscale patterning
界面处的物理化学过程导致纳米级图案化
  • 批准号:
    262009-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Discovery Grants Program - Individual
Physicochemical processes at interfaces leading to nanoscale patterning
界面处的物理化学过程导致纳米级图案化
  • 批准号:
    262009-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Discovery Grants Program - Individual
Study on nanoscale chemical reactions and reaction sites using quantum beams
利用量子束研究纳米级化学反应和反应位点
  • 批准号:
    22246128
  • 财政年份:
    2010
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了