Dynamic physicochemical nanoscale imaging at the solid-liquid interface
固液界面动态物理化学纳米级成像
基本信息
- 批准号:EP/V053884/1
- 负责人:
- 金额:$ 149.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Raman spectroscopy is an invaluable analytical tool for materials characterisation, providing essential information on the structure, chemical composition and local environment of molecules using the diagnostic fingerprint that the vibrational spectrum uniquely delivers. It is applied almost ubiquitously across the engineering, physical and life sciences, enabling analysis of molecular materials in their native state (regardless of the physical state of matter or environment), in the absence of labels or preparation procedures, in a non-invasive and non-destructive fashion. It does, however, suffer from two significant limitations: (i) low sensitivity, a result of the weakness of the Raman effect, where very few incident photons can be harnessed to generate information on vibrational structure, and; (ii) spatial resolution limited by the laws of optical diffraction. This places fundamental restrictions on the breadth of materials that can be examined, and the absolute precision with which information can be obtained in those that can. Necessitated by the comprehension that the principle functions of materials are governed by characteristics and phenomena that arise in molecular structures at the nanoscale, significant developments in the technology of Raman spectroscopy was warranted and an innovative approach - termed tip-enhanced Raman spectroscopy (TERS) - was consequently established. In TERS, a scanning probe microscopy (SPM) tip is illuminated with a laser at the natural plasmon frequency of the noble metal nanoparticle that resides at the tip apex. This creates a high-intensity electromagnetic field in the immediate vicinity of the SPM tip, and as such provides a new mechanism for high-sensitivity imaging of molecular materials at the nanometre length scale. Yet, to date, and for reasons of prior technical inadequacies of commercial instrumentation, its application has been largely restricted to analysis of solid surfaces in air at standard conditions of temperature and pressure. Thus, whilst TERS has effectively solved the fundamental deficiencies inherent to Raman spectroscopy, it has essentially failed to translate the highly desirable aspects of the parent technique, thus placing a significant barrier to its application for important materials science discoveries. To address this critical issue, we aim to pioneer an innovative nanoscale imaging capability, comprising optically-coupled SPM and Raman spectroscopy, and uniquely configured for the first time with dual optical access, multiple SPM functionalities and custom-made stages and liquid cells for environmental control. Designated DCI-TERS, our cutting-edge analytical platform will enable chemical fingerprint imaging of molecular materials significantly below the diffraction limit (<10 nm spatial resolution) for sampling both liquids and solids, with near-single-molecule-level sensitivity, along with 3D topographical analysis, acquired simultaneously from a single location (Tip-Enhanced Raman Spectroscopy). The incorporation of full performance SPM modes extends the breadth of surface physical characteristics obtainable from a single nanoscale volume (Correlative Imaging), whilst first-time provisions for environmental control stands to revolutionise in situ and operando investigations of chemical transformations at the gas-solid and liquid-solid interfaces, in response to light, heat and electrical potential (Dynamic Imaging). Thus, DCI-TERS represents an innovative methodology for temporally-resolved and location-correlated imaging of molecular materials and will deliver new fundamental knowledge on surface physicochemical (mechanical, electrical, thermal, structural compositional) properties under relevant conditions and at the nanoscale level, applicable to a broad spectrum of material research programmes, from drug delivery and medical devices to optoelectronics and batteries.
拉曼光谱是材料表征的宝贵分析工具,使用振动光谱独特提供的诊断指纹提供分子结构、化学成分和局部环境的基本信息。它几乎无处不在地应用于工程、物理和生命科学领域,能够在没有标签或制备过程的情况下,以非侵入性和非破坏性的方式分析处于天然状态的分子材料(无论物质或环境的物理状态如何)。然而,它确实受到两个显著的限制:(i)低灵敏度,这是拉曼效应的弱点的结果,其中可以利用非常少的入射光子来产生关于振动结构的信息,以及;(ii)空间分辨率受到光学衍射定律的限制。这就从根本上限制了可以检查的材料的广度,以及在可以检查的材料中获得信息的绝对精确度。由于认识到材料的主要功能受纳米级分子结构中出现的特性和现象的支配,拉曼光谱技术的重大发展是必要的,因此建立了一种称为尖端增强拉曼光谱(TERS)的创新方法。在TERS中,扫描探针显微镜(SPM)尖端用激光以驻留在尖端顶点处的贵金属纳米颗粒的自然等离子体频率照射。这在SPM尖端附近产生了高强度的电磁场,因此为纳米长度尺度的分子材料的高灵敏度成像提供了一种新的机制。然而,迄今为止,由于商业仪器的先前技术不足的原因,其应用主要限于在标准温度和压力条件下分析空气中的固体表面。因此,虽然TERS有效地解决了拉曼光谱固有的基本缺陷,但它基本上未能转化母技术的高度期望的方面,从而对其在重要材料科学发现中的应用设置了重大障碍。为了解决这一关键问题,我们的目标是开创一种创新的纳米级成像能力,包括光耦合SPM和拉曼光谱,并首次独特地配置了双光接入,多个SPM功能和定制的阶段和液体细胞的环境控制。我们的尖端分析平台被指定为DCI-TERS,可对远低于衍射极限(<10 nm空间分辨率)的分子材料进行化学指纹成像,用于液体和固体取样,具有接近单分子水平的灵敏度,沿着3D形貌分析,从单个位置同时采集(尖端增强拉曼光谱)。全性能SPM模式的引入扩展了从单个纳米体积获得的表面物理特性的广度(相关成像),而首次提供的环境控制站革命性地改变了在气固和液固界面的化学转化的原位和操作调查,以响应光,热和电势(动态成像)。因此,DCI-TERS代表了一种用于分子材料的时间分辨和位置相关成像的创新方法,并将在相关条件下和纳米级水平上提供有关表面物理化学(机械,电气,热,结构组成)特性的新基础知识,适用于广泛的材料研究计划,从药物输送和医疗设备到光电子和电池。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mike George其他文献
Global needs for nitrogen fertilizer to improve wheat yield under climate change.
气候变化下全球需要氮肥来提高小麦产量。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:18
- 作者:
Pierre Martre;Sibylle Dueri;J. Guarin;Frank Ewert;H. Webber;Daniel Calderini;Gemma Molero;Matthew Reynolds;Daniel Miralles;Guillermo Garcia;Hamish Brown;Mike George;R. Craigie;J. Cohan;Jean;Gustavo Slafer;Francesco Giunta;Davide Cammarano;R. Ferrise;Thomas Gaiser;Yujing Gao;Z. Hochman;G. Hoogenboom;L. Hunt;K. Kersebaum;C. Nendel;G. Padovan;A. Ruane;A. Srivastava;T. Stella;I. Supit;Peter J. Thorburn;Enli Wang;Joost Wolf;Chuang Zhao;Zhigan Zhao;S. Asseng - 通讯作者:
S. Asseng
Mike George的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mike George', 18)}}的其他基金
Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
- 批准号:
EP/Z53299X/1 - 财政年份:2024
- 资助金额:
$ 149.3万 - 项目类别:
Research Grant
Photo-Electro: Transforming Chemical Synthesis, Discovery and Manufacture
光电:改变化学合成、发现和制造
- 批准号:
EP/P013341/1 - 财政年份:2017
- 资助金额:
$ 149.3万 - 项目类别:
Research Grant
Centre for Digital Copyright and Intellectual Property Research in China
中国数字版权与知识产权研究中心
- 批准号:
AH/N504300/1 - 财政年份:2014
- 资助金额:
$ 149.3万 - 项目类别:
Research Grant
Topological Engineering Translation Grant
拓扑工程翻译补助金
- 批准号:
EP/H007210/1 - 财政年份:2010
- 资助金额:
$ 149.3万 - 项目类别:
Research Grant
The Role of Nonstatistical Dynamics in the Chemistry of Reactive Intermediates
非统计动力学在反应中间体化学中的作用
- 批准号:
EP/G013330/1 - 财政年份:2009
- 资助金额:
$ 149.3万 - 项目类别:
Research Grant
Carbon Dioxide and Alkanes as Electron-sink and Source in a Solar Nanocell: towards Tandem Photosynthesis of Carbon Monoxide and Methanol
二氧化碳和烷烃作为太阳能纳米电池中的电子沉和源:一氧化碳和甲醇的串联光合作用
- 批准号:
EP/F047789/1 - 财政年份:2008
- 资助金额:
$ 149.3万 - 项目类别:
Research Grant
Unravelling the photochemistry of organometallic N-heterocyclic carbene complexes
揭示有机金属N-杂环卡宾配合物的光化学
- 批准号:
EP/F000650/1 - 财政年份:2007
- 资助金额:
$ 149.3万 - 项目类别:
Research Grant
NMR and IR Studies of Activation of Small Molecules by Organometallic Complexes
有机金属配合物活化小分子的核磁共振和红外研究
- 批准号:
EP/D058031/1 - 财政年份:2006
- 资助金额:
$ 149.3万 - 项目类别:
Research Grant
相似海外基金
Physicochemical processes at interfaces leading to nanoscale patterning
界面处的物理化学过程导致纳米级图案化
- 批准号:
262009-2008 - 财政年份:2012
- 资助金额:
$ 149.3万 - 项目类别:
Discovery Grants Program - Individual
Physicochemical processes at interfaces leading to nanoscale patterning
界面处的物理化学过程导致纳米级图案化
- 批准号:
262009-2008 - 财政年份:2011
- 资助金额:
$ 149.3万 - 项目类别:
Discovery Grants Program - Individual
Physicochemical processes at interfaces leading to nanoscale patterning
界面处的物理化学过程导致纳米级图案化
- 批准号:
262009-2008 - 财政年份:2010
- 资助金额:
$ 149.3万 - 项目类别:
Discovery Grants Program - Individual
Project 2: Relating ENM Physicochemical Properties to Mechanism-Based Pulmonary T
项目 2:将 ENM 理化特性与基于机制的肺 T 联系起来
- 批准号:
8067631 - 财政年份:2010
- 资助金额:
$ 149.3万 - 项目类别:
Physicochemical processes at interfaces leading to nanoscale patterning
界面处的物理化学过程导致纳米级图案化
- 批准号:
262009-2008 - 财政年份:2009
- 资助金额:
$ 149.3万 - 项目类别:
Discovery Grants Program - Individual
Physicochemical processes at interfaces leading to nanoscale patterning
界面处的物理化学过程导致纳米级图案化
- 批准号:
262009-2008 - 财政年份:2008
- 资助金额:
$ 149.3万 - 项目类别:
Discovery Grants Program - Individual
Fate and Effects of Nanoparticles: Relationship to Physicochemical Properties
纳米颗粒的命运和影响:与理化性质的关系
- 批准号:
7341306 - 财政年份:2007
- 资助金额:
$ 149.3万 - 项目类别:
Fate and Effects of Nanoparticles: Relationship to Physicochemical Properties
纳米粒子的命运和影响:与理化性质的关系
- 批准号:
7624209 - 财政年份:2007
- 资助金额:
$ 149.3万 - 项目类别:
Project 2: Relating ENM Physicochemical Properties to Mechanism-Based Pulmonary T
项目 2:将 ENM 理化特性与基于机制的肺 T 联系起来
- 批准号:
8378083 - 财政年份:
- 资助金额:
$ 149.3万 - 项目类别:
Project 2: Relating ENM Physicochemical Properties to Mechanism-Based Pulmonary T
项目 2:将 ENM 理化特性与基于机制的肺 T 联系起来
- 批准号:
8274476 - 财政年份:
- 资助金额:
$ 149.3万 - 项目类别: