New bounds towards Fourier coefficients of Siegel modular forms

西格尔模形式傅里叶系数的新界限

基本信息

  • 批准号:
    EP/W001160/1
  • 负责人:
  • 金额:
    $ 10.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Automorphic forms are highly symmetric functions that constitute one of the most important concepts in modern mathematics. For instance, Sir Andrew Wiles' proof of Fermat's Last Theorem in 1995 relied on a deep connection between modular forms (an example of automorphic forms) and elliptic curves. Together with their associated L-functions, automorphic forms are also central objects in the Langlands programme - a vast web of theorems and conjectures connecting algebra, geometry, number theory, and analysis - which is one of the most active areas of mathematical research today. A key way in which automorphic forms can be understood is via their Fourier coefficients. Basic questions about Fourier coefficients of automorphic forms can contain an incredible amount of deep mathematics and can be extremely hard. For example, Ramanujan's conjecture (made in 1916) regarding an upper bound for the size of Fourier coefficients of modular forms was finally proved by Deligne in 1974, as a consequence of his deep, Fields medal winning work in arithmetic geometry. A very natural generalization of the (classical) modular forms is given by the Siegel modular forms, which were first investigated by Carl Ludwig Siegel in the 1930s. They are of great importance in number theory and the Langlands programme, and also have applications to physics and information technology. To give an example, Wiles' proof of Fermat's last theorem relies on a deep connection between modular forms and elliptic curves; the generalization of this to one dimension up (the so-called paramodular conjecture, which is a hot topic currently) involves Siegel modular forms.The main goal of this project is to prove new bounds towards the Fourier coefficients of (cuspidal) Siegel modular forms and thus make progress towards the famous Resnikoff-Saldana conjecture, a problem that has been open for almost 50 years. The successful completion of this project will lead to new improved understanding of Siegel modular forms, and it will demonstrate for the first time deep links between the Resnikoff-Saldana conjecture and other central conjectures in number theory. This will open up many avenues of further exploration.
自守形式是构成现代数学中最重要概念之一的高度对称函数。例如,安德鲁·怀尔斯爵士在1995年对费马大定理的证明依赖于模形式(自守形式的一个例子)和椭圆曲线之间的深层联系。自守形式与它们的相关L-函数一起也是朗兰兹纲领的中心对象--朗兰兹纲领是一个连接代数、几何、数论和分析的定理和结构的庞大网络--它是当今数学研究中最活跃的领域之一。自守形式可以理解的一个关键方法是通过它们的傅立叶系数。关于自守形式的傅立叶系数的基本问题可能包含令人难以置信的大量深度数学,并且可能非常困难。例如,拉马努金的猜想(在1916年)关于上限的大小傅立叶系数的模块化形式终于证明了德利涅在1974年,由于他的深,菲尔兹奖获奖工作算术几何。西格尔模形式是(经典)模形式的一个非常自然的推广,它首先由卡尔·路德维希·西格尔在20世纪30年代研究。它们在数论和朗兰兹纲领中具有重要意义,在物理学和信息技术中也有应用。举个例子,怀尔斯对费马大定理的证明依赖于模形式和椭圆曲线之间的深刻联系;将其推广到一维(所谓的paramodular猜想,这是一个热门话题目前)涉及西格尔模形式。这个项目的主要目标是证明新的界限对傅立叶系数的(尖)西格尔模块化的形式,从而取得进展,对著名的Resnikoff-Saldana猜想,一个问题,已开放了近50年。这个项目的成功完成将导致对西格尔模形式的新的理解,并将首次展示Resnikoff-Saldana猜想与数论中其他中心理论之间的深层联系。这将为进一步探索开辟许多途径。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Fourier Coefficients and Hecke Eigenvalues of Siegel Cusp Forms of Degree 2
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhishek Saha其他文献

Perinatal serotonin signalling dynamically influences the development of cortical GABAergic circuits with consequences for lifelong sensory encoding
围产期血清素信号动态影响皮质γ-氨基丁酸能回路的发育,对终生感觉编码产生影响
  • DOI:
    10.1038/s41467-025-59659-5
  • 发表时间:
    2025-06-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Gabriel Ocana-Santero;Hannah Warming;Veronica Munday;Heather A. MacKay;Caius Gibeily;Christopher Hemingway;Jacqueline A. Stacey;Abhishek Saha;Ivan P. Lazarte;Anjali Bachetta;Fei Deng;Yulong Li;Adam M. Packer;Trevor Sharp;Simon. J. B. Butt
  • 通讯作者:
    Simon. J. B. Butt
Equality, Diversity and Inclusion in the Mathematics Community: A Perspective on Data and Policy
数学界的平等、多样性和包容性:数据和政策的视角
  • DOI:
    10.1017/s1062798724000152
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Abhishek Saha
  • 通讯作者:
    Abhishek Saha
Crustal recycling and mantle heterogeneity beneath the Central Indian ridge, Indian Ocean
印度洋中央印度洋海岭之下的地壳再循环与地幔非均质性
Atomization of acoustically levitated droplet exposed to hot gases
暴露于热气体中的声悬浮液滴的雾化
  • DOI:
    10.1063/1.5139539
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yanju Wei;Yajing Yang;Jie Zhang;Shengcai Deng;Shenghua Liu;Chung K Law;Abhishek Saha
  • 通讯作者:
    Abhishek Saha
Mass equidistribution for Saito-Kurokawa lifts
Saito-Kurokawa 电梯的质量均匀分布
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jesse Jaasaari;Stephen Lester;Abhishek Saha
  • 通讯作者:
    Abhishek Saha

Abhishek Saha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abhishek Saha', 18)}}的其他基金

Career: Dynamics of coalescence and mixing during droplet impact on liquid films
职业:液滴撞击液膜时的聚结和混合动力学
  • 批准号:
    2145210
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Continuing Grant
An investigation of bi-directional flame-acoustic interactions during thermoacoustic instabilities
热声不稳定性期间双向火焰声相互作用的研究
  • 批准号:
    2053671
  • 财政年份:
    2021
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Standard Grant
Automorphic forms on higher rank groups: Fourier coefficients, L-functions, and arithmetic
高阶群上的自守形式:傅立叶系数、L 函数和算术
  • 批准号:
    EP/T028343/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Research Grant
Arithmetic aspects of automorphic forms: Petersson norms and special values of L-functions
自守形式的算术方面:Petersson 范数和 L 函数的特殊值
  • 批准号:
    EP/L025515/1
  • 财政年份:
    2014
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Research Grant

相似国自然基金

资本外逃及其逆转:基于中国的理论与实证研究
  • 批准号:
    70603008
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
  • 批准号:
    2338730
  • 财政年份:
    2024
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Continuing Grant
Complexity Lower Bounds from Expansion
扩展带来的复杂性下限
  • 批准号:
    23K16837
  • 财政年份:
    2023
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
  • 批准号:
    2311072
  • 财政年份:
    2023
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Standard Grant
Towards new classes of conic optimization problems
迈向新类别的二次曲线优化问题
  • 批准号:
    23K16844
  • 财政年份:
    2023
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tighter error bounds for representation learning and lifelong learning
表征学习和终身学习的更严格的误差范围
  • 批准号:
    RGPIN-2018-03942
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Discovery Grants Program - Individual
Branching Program Lower Bounds
分支程序下界
  • 批准号:
    RGPIN-2019-06288
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Discovery Grants Program - Individual
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
  • 批准号:
    RGPIN-2019-05543
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Discovery Grants Program - Individual
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
  • 批准号:
    567959-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
  • 批准号:
    558713-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Extremal Combinatorics Exact Bounds
极值组合精确界
  • 批准号:
    574168-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了