Stability of Brunn-Minkowski inequalities and Minkowski type problems for nonlinear capacity
Brunn-Minkowski 不等式的稳定性和非线性容量的 Minkowski 型问题
基本信息
- 批准号:EP/W001586/1
- 负责人:
- 金额:$ 32.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The origin of potential theory goes back to Newton's work on laws of mechanics in 1687 while studying the properties of forces which follow the law of gravitation. This theory has been widely used during the 17th and 18th centuries by Lagrange, Legendre, Laplace, and Gauss to study problems in the theory of gravitation, electrostatics and magnetism. It was observed that these forces could be modeled using so called harmonic functions which are solutions to a very special linear partial differential equation (PDE) known as Laplace's equation. A measuring notion called capacity appears in Physics and is defined as the ability of a body to hold an electrical charge. Mathematically, it can be calculated in terms of an integral of a certain harmonic function. The capacity has been widely used while studying harmonic functions and this field of Mathematics is called Potential Theory. This theory branched off in many directions including nonlinear potential theory of p-Laplace equation and A-harmonic PDEs. These are second-order elliptic PDEs and can be seen as a nonlinear generalization of Laplace's equation. A-harmonic PDEs have received little attention due to their nonlinearity and recently found applications in rheology, glaciology, radiation of heat, plastic moulding. Nonlinear capacity associated to A-harmonic PDEs naturally appears while studying boundary value problems for A-harmonic PDEs.A mathematical operation called Minkowski addition of sets appears in convex analysis. It is defined by addition of all possible sums in the sets and it appears in motion planning, 3D solid modeling, aggregation theory, and collision detection. Classical Brunn-Minkowski inequality has been known for more than a century and relates the volumes of subsets of Euclidean space under the Minkowski addition. It has been obtained for various other quantities including capacity obtained by C. Borell. Recently, the PI and his collaborators observed that nonlinear capacity satisfies a Brunn-Minkowski type inequality and it states that a certain power of it is a concave function under the Minkowski addition of any convex compact sets including low-dimensional sets. Inspired by the recent development on stability of the classical Brunn-Minkowski inequality by M. Christ, A. Figalli, and D. Jerison, the first part of this project is devoted to studying the stability of Brunn-Minkowski inequality for nonlinear capacity associated to A-harmonic PDEs for convex compact sets. This is a new and challenging direction of research as this problem has not been addressed even for the Logarithmic or Newtonian capacity associated to Laplacian. The project will also investigate sharpness of these inequalities for non-convex sets. Once the Brunn-Minkowski inequality has been studied, it is natural to study a related problem which is known as the Minkowski problem. This problem consists in finding a convex polyhedron from data consisting of normals to their faces and their surface areas. In the smooth case, the corresponding problem for convex bodies is to find the convex body given the Gauss curvature of its boundary, as a function of the unit normal. The proof consists of three parts: existence, uniqueness, and regularity. The PI and his collaborators have studied this problem from the potential theoretic point of view when underlying equations are A-harmonic PDEs and solved the existence and uniqueness in this setting. The second part of the project focuses on regularity of the Minkowski problem for nonlinear capacity associated to A-harmonic PDEs. This requires further work on regularity of solutions to a system of PDEs involving Monge-Ampere equation, a nonlinear second-order PDE of special kind, and A-harmonic PDEs. Building on D. Jerison's work, the project also aims to increase understanding of A-harmonic measures of convex domains associated to A-harmonic PDEs by studying a Minkowski-type problem.
势能理论的起源可以追溯到牛顿在1687年研究遵循万有引力定律的力的性质时对力学定律的研究。这个理论在17世纪和18世纪被拉格朗日、勒让德、拉普拉斯和高斯广泛用于研究引力、静电学和磁学理论中的问题。据观察,这些力量可以使用所谓的谐波函数,这是一个非常特殊的线性偏微分方程(PDE)称为拉普拉斯方程的解决方案建模。一个被称为电容的测量概念出现在物理学中,并被定义为物体保持电荷的能力。在数学上,它可以用某个调和函数的积分来计算。在调和函数的研究中,容量被广泛应用,这一数学领域被称为势理论。该理论在许多方面产生了分支,包括p-Laplace方程的非线性势理论和A-调和偏微分方程。这是二阶椭圆型偏微分方程,可以看作是拉普拉斯方程的非线性推广。A-调和偏微分方程由于其非线性特性而很少受到人们的关注,近年来在流变学、冰川学、热辐射、塑料成型等领域得到了广泛的应用。在研究A-调和偏微分方程边值问题时,自然会出现与A-调和偏微分方程相关联的非线性容量问题,在凸分析中出现了一种称为集合Minkowski加法的数学运算.它是通过集合中所有可能的和的相加来定义的,它出现在运动规划,3D实体建模,聚合理论和碰撞检测中。经典的Brunn-Minkowski不等式已经存在了世纪,它与欧氏空间的子集在Minkowski加法下的体积有关。它已经得到了各种其他量,包括C。博雷尔最近,PI和他的合作者观察到非线性容量满足Brunn-Minkowski型不等式,并指出它的某个幂是任何凸紧集(包括低维集)的Minkowski加法下的凹函数。受M.天啊A Figalli和D. Jerison的第一部分研究了凸紧集上A-调和偏微分方程非线性容量的Brunn-Minkowski不等式的稳定性。这是一个新的和具有挑战性的研究方向,因为这个问题还没有得到解决,甚至与拉普拉斯相关的对数或牛顿容量。该项目还将研究这些不等式的非凸集的尖锐性。一旦研究了Brunn-Minkowski不等式,自然会研究一个相关的问题,称为Minkowski问题。这个问题在于找到一个凸多面体的数据组成的法线,他们的脸和他们的表面面积。在光滑的情况下,凸体的相应问题是找到给定其边界的高斯曲率的凸体,作为单位法线的函数。证明由三部分组成:存在性、唯一性和正则性。PI和他的合作者已经从势能理论的角度研究了这个问题,当基本方程是A-调和偏微分方程时,解决了这个问题的存在性和唯一性。该项目的第二部分重点研究了与A-调和偏微分方程相关的非线性容量的Minkowski问题的正则性。这就需要进一步研究一类包含Monge-Ampere方程、一类特殊的非线性二阶偏微分方程和A-调和偏微分方程的偏微分方程组的解的正则性。在D.该项目还旨在通过研究Minkowski型问题来加深对与A-调和偏微分方程相关的凸域的A-调和测度的理解。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Brunn-Minkowski Inequality and A Minkowski Problem for Nonlinear Capacity
- DOI:10.1090/memo/1348
- 发表时间:2017-09
- 期刊:
- 影响因子:1.9
- 作者:M. Akman;Jasun Gong;Jay Hineman;Johnny M. Lewis;A. Vogel
- 通讯作者:M. Akman;Jasun Gong;Jay Hineman;Johnny M. Lewis;A. Vogel
Borderline gradient continuity for the normalized $p$-parabolic operator
归一化 $p$-抛物线算子的边界梯度连续性
- DOI:10.48550/arxiv.2211.15246
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Akman M
- 通讯作者:Akman M
Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition
满足容量密度条件的1边NTA域中椭圆算子的摄动
- DOI:10.1515/forum-2022-0323
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Akman, Murat;Hofmann, Steve;Martell, José María;Toro, Tatiana
- 通讯作者:Toro, Tatiana
Failure of Fatou type theorems for solutions to PDE of p -Laplace type in domains with flat boundaries
平坦边界域中 p -拉普拉斯型偏微分方程解法图型定理的失败
- DOI:10.1080/03605302.2022.2056704
- 发表时间:2022
- 期刊:
- 影响因子:1.9
- 作者:Akman M
- 通讯作者:Akman M
Square function and non-tangential maximal function estimates for elliptic operators in 1-sided NTA domains satisfying the capacity density condition
满足容量密度条件的1边NTA域中椭圆算子的平方函数和非切向极大函数估计
- DOI:10.1515/acv-2021-0053
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Akman, Murat;Hofmann, Steve;Martell, José María;Toro, Tatiana
- 通讯作者:Toro, Tatiana
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murat Akman其他文献
On the logarithm of the minimizing integrand for certain variational problems in two dimensions
- DOI:
10.1007/s13324-012-0023-8 - 发表时间:
2012-01-24 - 期刊:
- 影响因子:1.600
- 作者:
Murat Akman;John L. Lewis;Andrew Vogel - 通讯作者:
Andrew Vogel
On the Minkowski problem for p-harmonic measures
- DOI:
10.1007/s00526-024-02865-8 - 发表时间:
2024-12-16 - 期刊:
- 影响因子:2.000
- 作者:
Murat Akman;Shirsho Mukherjee - 通讯作者:
Shirsho Mukherjee
Note on an eigenvalue problem with applications to a Minkowski type regularity problem in $${\mathbb {R}}^{n}$$
- DOI:
10.1007/s00526-020-1697-7 - 发表时间:
2020-02-10 - 期刊:
- 影响因子:2.000
- 作者:
Murat Akman;John Lewis;Andrew Vogel - 通讯作者:
Andrew Vogel
Murat Akman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
凸几何中Brunn-Minkowski型不等式的研究
- 批准号:QN25A010011
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于α凹函数Brunn-Minkowski理论的研究
- 批准号:12301071
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Orlicz Brunn-Minkowski 理论中投影体的仿射极值问题研究
- 批准号:11601399
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
Orlicz–Brunn–Minkowski 理论中若干典型问题研究
- 批准号:11561020
- 批准年份:2015
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
对偶的 Orlicz Brunn-Minkowski 理论及应用
- 批准号:11471206
- 批准年份:2014
- 资助金额:62.0 万元
- 项目类别:面上项目
Orlicz-Brunn-Minkowski 理论中若干极值问题
- 批准号:11371239
- 批准年份:2013
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Halecomorph actinopterygians from the Kimmeridgian of Brunn: insights into the origin and evolutionary dynamics of the fishes from the Solnhofen Archipelago
来自布伦启默里阶的Halecomorph actinopterygians:深入了解索恩霍芬群岛鱼类的起源和进化动态
- 批准号:
397229833 - 财政年份:2018
- 资助金额:
$ 32.14万 - 项目类别:
Research Grants
A curvature flow approach to the logarithmic Brunn-Minkowski Inequality
求解对数 Brunn-Minkowski 不等式的曲率流方法
- 批准号:
486126-2015 - 财政年份:2015
- 资助金额:
$ 32.14万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Vertebrates from the Kimmeridgian of Brunn (Oberpfalz)
来自布伦启莫里阶(上普法尔茨)的脊椎动物
- 批准号:
244179799 - 财政年份:2013
- 资助金额:
$ 32.14万 - 项目类别:
Research Grants
Coordination of R/V Anton Brunn-Southeastern Pacific Biological Oceanographic Programs
R/V Anton Brunn-东南太平洋生物海洋学计划的协调
- 批准号:
66B4383 - 财政年份:1966
- 资助金额:
$ 32.14万 - 项目类别:














{{item.name}}会员




