Spin current propagation through epitaxial antiferromagnetic thin films

自旋电流通过外延反铁磁薄膜的传播

基本信息

  • 批准号:
    EP/W006006/1
  • 负责人:
  • 金额:
    $ 71.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The operation of modern day electronics depends upon electric currents that transport electron charge. However, the electron also possesses intrinsic angular momentum, known as "spin", that is responsible for its magnetic moment. Spin is a quantum-mechanical quantity with two allowed values. We can therefore think of the electron as the smallest possible bar magnet with its north pole pointing either up or down. Ordinarily an electric current transports equal numbers of electrons in the up and down states. However, inside a ferromagnetic material there are more electrons in the up state than the down state; this is the origin of its magnetic behaviour. This means an electric current drawn from a ferromagnet will have a preponderance of up spins. In fact, under certain circumstances in non-magnetic metals, we can arrange for equal numbers of electrons with up and down spins to move in opposite directions so that there is a flow of spin angular momentum without any flow of charge. This is what is meant by a pure spin current.Within a ferromagnet an additional mechanism is available to transport spin current. Rather than the electrons moving, we can think of one electron flipping its spin from up to down and the location of this flipped spin moving from one atom to the next. This mechanism is present even when the material is an electrical insulator and is known as a "spin wave". Ferromagnets are only one of many types of material that have magnetic order. This proposal is concerned primarily with antiferromagnetic materials, where the direction of the spin alternates between up and down for successive layers of atoms. Antiferromagnets have no net magnetic moment, because those on adjacent atoms cancel out, so are generally more difficult to study, and for a long time were thought to be useless in terms of practical applications. However, spin waves also occur in antiferromagnets and so antiferromagnets can be used to transport pure spin current.It was recently observed that the amplitude of a spin current can be enhanced by the insertion of thin antiferromagnetic layers into a stack of ferromagnetic and non-magnetic layers. We have shown that the antiferromagnetic layer is able to transport both dc and ac spin currents, confirming a model that also predicts that spin currents could be amplified by at least a factor of 10 if the thickness of the layer is chosen carefully. This additional angular momentum is drawn from the crystal lattice. Given that a small electric current is usually required to generate a pure spin current, the ability to amplify spin current in the antiferromagnetic layer means that the energy efficiency of devices using spin currents could be significantly improved. One immediate example is a type of magnetic random access memory (MRAM), where spin current is injected into a ferromagnetic layer to reverse its magnetization so as to represent a 0 or 1 in binary code. Reducing power consumption by just a factor of 2 would already make MRAM an attractive alternative to dynamic random access memory (DRAM) within data centre applications.In this project, we will use an ultrafast laser measurement technique to first observe the spin wave modes that exist within antiferromagnetic thin films that may be the order of 10 atomic diameters in thickness. This will be a major achievement since ultrathin films can behave very differently to bulk crystals, and methods for observing their spin waves have yet to be demonstrated. Once we have this information, we will then be able to design multi-layered stacks in which to observe the propagation and amplification of spin currents. Specifically, we will use a time resolved x-ray measurement technique at a synchrotron source that we have already developed and demonstrated. Finally, we will explore how the stacks can be optimised so that they can be used in practical applications such as MRAM.
现代电子学的运行依赖于传输电子电荷的电流。然而,电子还具有固有的角动量,称为“自旋”,这是其磁矩的原因。自旋是一个有两个允许值的量子力学量。因此,我们可以把电子看作是最小的条形磁铁,它的北极不是朝上就是朝下。通常,电流在上升态和下降态传输相同数量的电子。然而,在铁磁材料内部,处于向上状态的电子比处于向下状态的电子多;这是其磁性行为的起源。这意味着从铁磁物质引出的电流将具有向上旋转的优势。事实上,在非磁性金属的某些情况下,我们可以安排相同数量的上下自旋电子沿相反方向运动,这样就有了自旋角动量流,而没有任何电荷流。这就是所谓的纯自旋流,在铁磁体中,还有一种额外的机制可以用来传输自旋流。我们可以想象一个电子从上到下翻转它的自旋,而不是电子移动,翻转的自旋的位置从一个原子移动到另一个原子。即使当材料是电绝缘体时,这种机制也存在,并且被称为“自旋波”。铁磁体只是具有磁序的许多类型材料中的一种。该提案主要涉及反铁磁材料,其中连续原子层的自旋方向在上下之间交替。反铁磁体没有净磁矩,因为相邻原子上的磁矩相互抵消,所以通常更难以研究,并且很长一段时间被认为在实际应用方面毫无用处。然而,自旋波也发生在反铁磁体中,因此反铁磁体可以用来传输纯自旋电流。最近观察到,通过在铁磁层和非磁性层的堆叠中插入薄的反铁磁层,可以增强自旋电流的幅度。我们已经表明,反铁磁层能够传输直流和交流自旋电流,确认一个模型,也预测自旋电流可以放大至少10倍,如果层的厚度是仔细选择。这个额外的角动量来自晶格。考虑到通常需要小电流来产生纯自旋电流,在反铁磁层中放大自旋电流的能力意味着可以显著提高使用自旋电流的器件的能量效率。一个直接的示例是一种类型的磁性随机存取存储器(MRAM),其中自旋电流被注入到铁磁层中以反转其磁化,从而以二进制代码表示0或1。在这个项目中,我们将使用超快激光测量技术首先观察反铁磁薄膜中存在的自旋波模式,该薄膜的厚度可能是10个原子直径的数量级。这将是一个重大的成就,因为超导薄膜的行为与大块晶体非常不同,观察它们的自旋波的方法还有待证明。一旦我们有了这些信息,我们就能够设计多层堆叠,以观察自旋电流的传播和放大。具体来说,我们将在同步加速器源上使用我们已经开发和演示的时间分辨x射线测量技术。最后,我们将探讨如何优化堆栈,以便它们可以用于MRAM等实际应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hicken其他文献

Robert Hicken的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hicken', 18)}}的其他基金

ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
  • 批准号:
    EP/X036715/1
  • 财政年份:
    2023
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
Ultrafast helicity-dependent all-optical switching in hybrid magnetic nanomaterials
混合磁性纳米材料中的超快螺旋依赖全光开关
  • 批准号:
    EP/V048538/1
  • 财政年份:
    2021
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
Expanded access to the Exeter time resolved magnetism (EXTREMAG) facility
扩大对埃克塞特时间分辨磁力 (EXTREMAG) 设施的访问
  • 批准号:
    EP/V054112/1
  • 财政年份:
    2021
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
EXTREMAG: an Exeter-based Time Resolved Magnetism Facility
EXTREMAG:基于埃克塞特的时间分辨磁力设施
  • 批准号:
    EP/R008809/1
  • 财政年份:
    2018
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
Picosecond Dynamics of Magnetic Exchange Springs
交换磁弹簧的皮秒动力学
  • 批准号:
    EP/P02047X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
Optical detection of magnetisation dynamics induced by spin-orbit torques
自旋轨道扭矩引起的磁化动力学的光学检测
  • 批准号:
    EP/P008550/1
  • 财政年份:
    2017
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
A Plasmonic Antenna for Magneto-Optical Imaging at the Deep Nanoscale
用于深纳米尺度磁光成像的等离子体天线
  • 批准号:
    EP/I038470/1
  • 财政年份:
    2012
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
Materials World Network: Spin dynamics of the ferromagnet/antiferromagnet interface studied by time-resolved x-ray magnetic dichroism
材料世界网:通过时间分辨 X 射线磁二色性研究铁磁体/反铁磁体界面的自旋动力学
  • 批准号:
    EP/J018767/1
  • 财政年份:
    2012
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
A Planar Microwave Cavity Loaded with Ferrromagnetic Material: a new 8.2 MHz Anti-Theft Tag for Metallic Packaging within the Retail Sector
装有铁磁材料的平面微波腔:零售行业金属包装的新型 8.2 MHz 防盗标签
  • 批准号:
    EP/I500219/1
  • 财政年份:
    2010
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
Picosecond magnetization dynamics of nanomagnets: time resolved XMCD and XPEEM
纳米磁体的皮秒磁化动力学:时间分辨 XMCD 和 XPEEM
  • 批准号:
    EP/F021755/1
  • 财政年份:
    2008
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant

相似国自然基金

循环二氧化碳水平升高导致延迟钠电流增加的致心律失常作用及其发生机制的研究
  • 批准号:
    81170156
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
华南二叠纪凉水洋流上涌与回落过程及其生态环境响应
  • 批准号:
    40972024
  • 批准年份:
    2009
  • 资助金额:
    44.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spin current propagation through epitaxial antiferromagnetic thin films
自旋电流通过外延反铁磁薄膜的传播
  • 批准号:
    EP/W006049/1
  • 财政年份:
    2022
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Research Grant
Gravity current propagation through density stratified media with applications to transport in the built environment and pollution dispersion in nature
通过密度分层介质的重力流传播及其在建筑环境中的传输和自然界中的污染扩散中的应用
  • 批准号:
    RGPIN-2014-04828
  • 财政年份:
    2018
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Discovery Grants Program - Individual
Gravity current propagation through density stratified media with applications to transport in the built environment and pollution dispersion in nature
通过密度分层介质的重力流传播及其在建筑环境中的传输和自然界中的污染扩散中的应用
  • 批准号:
    RGPIN-2014-04828
  • 财政年份:
    2017
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Discovery Grants Program - Individual
Gravity current propagation through density stratified media with applications to transport in the built environment and pollution dispersion in nature
通过密度分层介质的重力流传播及其在建筑环境中的传输和自然界中的污染扩散中的应用
  • 批准号:
    RGPIN-2014-04828
  • 财政年份:
    2016
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Discovery Grants Program - Individual
Gravity current propagation through density stratified media with applications to transport in the built environment and pollution dispersion in nature
通过密度分层介质的重力流传播及其在建筑环境中的传输和自然界中的污染扩散中的应用
  • 批准号:
    RGPIN-2014-04828
  • 财政年份:
    2015
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Discovery Grants Program - Individual
Gravity current propagation through density stratified media with applications to transport in the built environment and pollution dispersion in nature
通过密度分层介质的重力流传播及其在建筑环境中的传输和自然界中的污染扩散中的应用
  • 批准号:
    RGPIN-2014-04828
  • 财政年份:
    2014
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Discovery Grants Program - Individual
A novel indicator of coastal environment in the Kuroshio Current region: Estimation of intertidal degradation by coenocytic green algae and coutermeasures for its propagation
黑潮地区沿海环境的新指标:同生绿藻潮间带退化的估计及其繁殖对策
  • 批准号:
    23310024
  • 财政年份:
    2011
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quench/Thermal Runaway Detection and Protection Technique for Conduction-cooled HTS Conductors
传导冷却高温超导导体的淬火/热失控检测与保护技术
  • 批准号:
    16360138
  • 财政年份:
    2004
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development in design technology of advanced MgB_2 wires for future electric device windings
未来电子器件绕组用先进MgB_2线材设计技术开发
  • 批准号:
    16206032
  • 财政年份:
    2004
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on rapid molecular diffusion and charge propagation in a quasi-solid of nanostructured polymers
纳米结构聚合物准固体中快速分子扩散和电荷传播的研究
  • 批准号:
    15550101
  • 财政年份:
    2003
  • 资助金额:
    $ 71.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了