New Frontiers on Entanglement Measures in the Quantum sine-Gordon Model

量子正弦戈登模型中纠缠测量的新前沿

基本信息

  • 批准号:
    EP/W007045/1
  • 负责人:
  • 金额:
    $ 7.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Branch Point Twist Fields are a leading tool in the context of the analytic computation of entanglement measures in 1+1D quantum field theory (QFT). Their usefulness follows from the relationship between entanglement measures and correlation functions of branch point twist fields. More precisely, in 1+1D entanglement measures can be expressed in terms of n-point functions of branch point twists fields, where n is the number of boundary points between the regions A and B whose mutual bipartite entanglement is being evaluated. Since this approach was introduced for massive theories in 2007, branch point twist fields have been employed in multiple contexts to either study features of entanglement (both at and away from equilibrium) or to construct building blocks of generic entanglement measures (i.e. form factors). The PI has been involved in much of this work. Despite substantial activity, integrable QFTs with non-diagonal scattering have been much less studied due to the well-known complexities of form factor computations. In particular, for the most paradigmatic non-diagonal integrable QFT, the sine-Gordon model, there have been only two publications in recent years, both involving the PI. The first in 2009 was a study of the repulsive regime of the theory (where the particle spectrum is particularly simple), and more recently, in the current year, a more ambitious study for the full range of values of the coupling (hence a much more involved particle spectrum) was carried out. This recent work was in collaboration with David X. Horvath (SISSA, Italy). The current proposal follows organically from this recent collaboration which has created an opportunity for a much more ambitious study of the problem. In particular, our joint expertise, puts us in the best position to consider one of the most recent entanglement measures of interest, namely the symmetry resolved entanglement entropy, in the sine-Gordon model. It has been recently discovered that in the presence of an internal symmetry, the structure of the reduced density matrix in terms of which all entanglement measures are constructed, is highly predictable and regular. In general, it is block-diagonal, which block-sizes relating to the underlying symmetry. This also means that each block makes a contribution to entanglement measures and that those individual contributions can be computed as quantities of particular interest. Following this observation, Horváth and Calabrese (2020) have developed a new form factor programme for a generalized branch point twist field whose correlators give the block contributions to entanglement. One of the main objectives of this project is to compute the form factors of these new branch point twist fields in the sine-Gordon model, study their analytical properties, hence the analytical properties of the symmetry resolved entanglement. This project requires advanced knowledge of the technicalities involved in such types of computation, which the PI and collaborators have an excellent track record of.
分支点扭曲场是1+ 1维量子场论中纠缠测度解析计算的重要工具。它们的有用性来自于分支点扭曲场的纠缠度量和关联函数之间的关系。更精确地说,在1+1D中,纠缠度量可以用分支点扭曲场的n点函数来表示,其中n是区域A和B之间的边界点的数量,区域A和B的相互二分纠缠被评估。自从这种方法在2007年被引入到大质量理论中以来,分支点扭曲场已经在多种背景下被用来研究纠缠的特征(无论是在平衡态还是远离平衡态),或者构建通用纠缠度量的构建模块(即形状因子)。PI参与了大部分工作。尽管有大量的活动,但由于形状因子计算的众所周知的复杂性,具有非对角散射的可积QFT的研究要少得多。特别是,对于最典型的非对角可积QFT,sine-Gordon模型,近年来只有两个出版物,都涉及PI。2009年的第一项研究是对该理论的排斥机制的研究(其中粒子谱特别简单),最近,在本年度,对耦合的全范围值进行了更雄心勃勃的研究(因此涉及更多的粒子谱)。最近的这项工作是与大卫X合作完成的。Horvath(西萨,意大利).目前的建议有机地遵循了最近的合作,这为对这一问题进行更雄心勃勃的研究创造了机会。特别是,我们的联合专业知识,使我们在最好的位置,考虑最近的纠缠感兴趣的措施之一,即对称解决纠缠熵,在正弦戈登模型。最近发现,在存在内部对称性的情况下,构造所有纠缠度量的约化密度矩阵的结构是高度可预测的和规则的。一般来说,它是块对角的,它的块大小与潜在的对称性有关。这也意味着每个块都对纠缠度量做出贡献,并且这些单独的贡献可以作为特别感兴趣的量来计算。根据这一观察,Horváth和Calabrese(2020)为广义分支点扭曲场开发了一个新的形状因子方案,该扭曲场的双折射子为纠缠提供了块贡献。本项目的主要目标之一是计算sine-Gordon模型中这些新的分支点扭曲场的形状因子,研究它们的解析性质,从而研究对称分辨纠缠的解析性质。这个项目需要对这类计算所涉及的技术细节有深入的了解,PI和合作者在这方面有着良好的记录。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetry resolved entanglement of excited states in quantum field theory. Part III. Bosonic and fermionic negativity
对称性解决了量子场论中激发态的纠缠。
Form Factors and Correlation Functions of $\mathrm{T}\overline{\mathrm{T}}$-Deformed Integrable Quantum Field Theories
$mathrm{T}overline{mathrm{T}}$-变形可积量子场论的形状因子和相关函数
  • DOI:
    10.48550/arxiv.2306.01640
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Castro-Alvaredo O
  • 通讯作者:
    Castro-Alvaredo O
Symmetry resolved entanglement of excited states in quantum field theory. Part II. Numerics, interacting theories and higher dimensions
对称性解决了量子场论中激发态的纠缠。
Symmetry resolved entanglement of excited states in quantum field theory. Part I. Free theories, twist fields and qubits
对称性解决了量子场论中激发态的纠缠。
Form factors and correlation functions of $$ \textrm{T}\overline{\textrm{T}} $$-deformed integrable quantum field theories
$$ extrm{T}overline{ extrm{T}} $$变形可积量子场论的形状因子和相关函数
  • DOI:
    10.1007/jhep09(2023)048
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Castro-Alvaredo O
  • 通讯作者:
    Castro-Alvaredo O
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olalla Castro-Alvaredo其他文献

Olalla Castro-Alvaredo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olalla Castro-Alvaredo', 18)}}的其他基金

Entanglement Measures, Twist Fields, and Partition Functions in Quantum Field Theory
量子场论中的纠缠测度、扭曲场和配分函数
  • 批准号:
    EP/P006108/1
  • 财政年份:
    2016
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Research Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

New Frontiers for Anonymous Authentication
匿名身份验证的新领域
  • 批准号:
    DE240100282
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Discovery Early Career Researcher Award
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
  • 批准号:
    2415310
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Standard Grant
New Frontiers in Large-Scale Polynomial Optimisation
大规模多项式优化的新领域
  • 批准号:
    DE240100674
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Discovery Early Career Researcher Award
RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Continuing Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
  • 批准号:
    2347894
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Standard Grant
Conference: USA-UK-China-Israel Workshop on Frontiers in Ecology and Evolution of Infectious Diseases
会议:美国-英国-中国-以色列生态学和传染病进化前沿研讨会
  • 批准号:
    2406564
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Standard Grant
Mapping the Frontiers of Private Property in Australia
绘制澳大利亚私有财产的边界
  • 批准号:
    DP240100395
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Discovery Projects
Conference: FRONTIERS OF ENGINEERING (2024 US FOE, 2024 China-America FOE, and 2025 German-American FOE)
会议:工程前沿(2024年美国之敌、2024年中美之敌、2025年德美之敌)
  • 批准号:
    2405026
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Standard Grant
Frontiers in gravitational wave astronomy (FRoGW)
引力波天文学前沿(FRoGW)
  • 批准号:
    EP/Y023706/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.56万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了