Context Aware Augmented Reality for Endonasal Endoscopic Surgery
用于鼻内内窥镜手术的情境感知增强现实
基本信息
- 批准号:EP/W00805X/1
- 负责人:
- 金额:$ 141.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to develop tools to guide a surgeon during surgery to remove cancers on the pituitary gland. Access to the pituitary gland is difficult, and one current approach is the endonasal approach, through the nose. However, while this approach is minimally invasive which is better for the patient, it is technically challenging for the surgeon. It is difficult for the surgeon to manoeuvre the tools, but also difficult for the surgeon to maintain contextual awareness and remember the location of and identify critical structures. One proposed solution is to combine pre-operative scan data, such as information from Magnetic Resonance Imaging (MRI), or Computed Tomography (CT) scans, and use them in conjunction with the video. Typically, engineers have proposed "Augmented Reality", where the information from MRI/CT scans is simply overlaid on top of the endoscopic video. But this approach has not found favour with clinical teams, and the result is often confusing and difficult to use.In this project we have assembled a team of surgeons and engineers to re-think the Augmented Reality paradigm from the ground up. First, the aim is to identify the most relevant information to display on-screen at each stage of the operation. Then machine learning will be used to analyse the endoscopic video, and automatically identify which stage of the procedure the surgeon is working on. The guidance system will then automatically switch modes, and provide the most useful information for each stage of the procedure. Finally, we will automate the alignment of pre-operative data to the endoscopic video, using machine learning techniques.The end result should be more accurate, and more clinically relevant than the current state of the art methods, and represent a genuine step change in performance for image-guidance during skull-base procedures.
该项目旨在开发工具,以指导外科医生在手术中切除脑下垂体上的癌症。进入脑垂体是困难的,目前的一种方法是通过鼻子的鼻内途径。然而,虽然这种方法是微创的,对患者更好,但对外科医生来说在技术上具有挑战性。外科医生很难操纵工具,而且外科医生也很难保持上下文意识并记住关键结构的位置并识别关键结构。一种所提出的解决方案是联合收割机组合术前扫描数据,例如来自磁共振成像(MRI)或计算机断层摄影(CT)扫描的信息,并将它们与视频结合使用。通常,工程师们提出了“增强现实”,其中来自MRI/CT扫描的信息简单地覆盖在内窥镜视频之上。但这种方法并没有得到临床团队的青睐,结果往往是混乱和难以使用。在这个项目中,我们组建了一个由外科医生和工程师组成的团队,从头开始重新思考增强现实模式。首先,目的是确定在操作的每个阶段在屏幕上显示的最相关的信息。然后,机器学习将用于分析内窥镜视频,并自动识别外科医生正在进行的手术阶段。然后,引导系统将自动切换模式,并为手术的每个阶段提供最有用的信息。最后,我们将使用机器学习技术自动将术前数据与内窥镜视频对齐。最终结果应该比当前最先进的方法更准确,更具有临床相关性,并代表了颅底手术期间图像引导性能的真正飞跃。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surgical-VQLA: Transformer with Gated Vision-Language Embedding for Visual Question Localized-Answering in Robotic Surgery
Surgical-VQLA:具有门控视觉语言嵌入的 Transformer,用于机器人手术中的视觉问题本地化回答
- DOI:10.48550/arxiv.2305.11692
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bai L
- 通讯作者:Bai L
Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 - 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part IX
医学图像计算和计算机辅助干预 - MICCAI 2023 - 第 26 届国际会议,加拿大不列颠哥伦比亚省温哥华,2023 年 10 月 8-12 日,会议记录,第九部分
- DOI:10.1007/978-3-031-43996-4_45
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Das A
- 通讯作者:Das A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Clarkson其他文献
Technical Note on the production of 3D anatomical models using an open access software from medical imaging
- DOI:
10.1016/j.bjoms.2021.12.036 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Soudeh Chegini;Clare Schilling;Matthew Clarkson - 通讯作者:
Matthew Clarkson
Matthew Clarkson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Clarkson', 18)}}的其他基金
Real-Time Ultrasound Guided Abdominal Interventions Without a Tracking Device
无需跟踪设备的实时超声引导腹部干预
- 批准号:
EP/T029404/1 - 财政年份:2021
- 资助金额:
$ 141.32万 - 项目类别:
Research Grant
Content Based Image Retrieval For Real-Time Registration In Image-Guided Interventions
基于内容的图像检索,用于图像引导干预中的实时配准
- 批准号:
EP/P034454/1 - 财政年份:2017
- 资助金额:
$ 141.32万 - 项目类别:
Research Grant
相似海外基金
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Standard Grant
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Discovery Projects
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Research Grant
A Knowledge-aware Multi-tasks-based Disease Network Construction on Biomedical Literature
基于生物医学文献的知识感知多任务疾病网络构建
- 批准号:
24K15097 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Studentship
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
$ 141.32万 - 项目类别:
Continuing Grant