Performance and Injectivity of CO2 in Hyper-Saline Aquifers

高盐度含水层中二氧化碳的性能和注入能力

基本信息

  • 批准号:
    EP/W008718/1
  • 负责人:
  • 金额:
    $ 96.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Climate change is a global challenge imposed by excessive emission of anthropogenic greenhouse gases to the atmosphere. It is estimated that CO2 is responsible for two-thirds of global challenge. To decelerate this global challenge, several inter-governmental agreements and legislation have been established to reduce the atmospheric CO2 effects (e.g. 2015 Paris agreement, 2019 UK NetZero) through a combination of various technological, societal and industrial actions. One of the key pathways to reduce CO2 atmospheric emission is carbon capture and storage (CCS). In CCS, CO2 is captured from anthropogenic sources and is injected into deep saline aquifers, depleted oil and gas reservoirs or other geological traps. Deep saline aquifers play an important role as their capacity for safe storage of CO2 is two orders of magnitude greater than depleted oil and gas reservoirs. Maintaining injection of CO2 into subsurface is a critical part determining the success of any CCS project, however, this is not always straightforward. Former studies show that with injection of dry super-critical CO2 in saline and hypersaline aquifers, salt forms in porous space and permeability decreases, leading to injectivity loss. Given this challenge it is essential to develop fundamental knowledge and a predictive model to establish know-how of injectivity loss under different thermodynamic conditions (pressure and temperature), hydrodynamic conditions (injection rate), and rock heterogeneity conditions, referred to as THR hereafter. The PINCH project aims to establish fundamental science to develop a novel predictive model and apply it to real field data supported by industries. PINCH brings together scientists from University of Manchester, Durham University, Princeton University, BP, Equinor, Shell to deliver project aims in five work packages (WP). WP1 addresses fundamental questions at pore scale to delineate impacts of THR conditions on salt formation and its aggregation regime under high-pressure high-temperature (HPHT) conditions. HPHT optical visualisation of micromodels and HPHT synchrotron-based X-ray imaging of micro-core flooding will be used to visualise the real-time change of pore morphology under different conditions. WP1 will deliver unique and valuable four-dimensional data sets to establish fundamental knowledge and to support WP3 data requirements. WP2 addresses similar research questions as WP1 in real rock materials at a larger physical scale (core). BGS will facilitate access to the rock materials required. Additionally, pressure injectivity and rock mechanical properties will be measured under different THR conditions. We will address the knowledge gaps in the role of these factors on the injectivity loss. This will assist development of predictive modelling as envisaged in WP3. WP3 is the core of PINCH project as a novel multiscale modelling approach is proposed. Pore-scale modelling will be developed to capture multiphase flow, phase change, salt formation. The model will be validated against the observations in WP1. Also a continuum-scale model will be developed which will incorporate the pore-scale modelling for parameterisation. The model will be validated against the experiments in WP2. WP4 will deliver a high-impact research all fundamental science established in WP1 and WP2 and the engineering tools developed in WP3 will be employed to address real-life laboratorial and field-scale challenge related to the injection of supercritical CO2 in hypersaline aquifers and subsequent injectivity loss. Three candidate CCS fields are Endurance, Quest and Snohvit. BP, Equinor, Shell will provide very strong in-kind contribution to PINCH by providing required data from the aforementioned fields and technical advise. To guarantee the impact of PINCH project, WP5 has been envisaged which covers impact generation, knowledge exchange between academia and industry, and training of junior staff.
气候变化是人类向大气过度排放温室气体所带来的全球性挑战。据估计,二氧化碳是全球三分之二的挑战。为了减缓这一全球性挑战,已经制定了几项政府间协议和立法,通过各种技术,社会和工业行动的组合来减少大气CO2的影响(例如2015年巴黎协议,2019年英国NetZero)。减少CO2大气排放的关键途径之一是碳捕集与封存(CCS)。在CCS中,从人为来源捕获CO2,并将其注入深层盐水层、枯竭的油气藏或其他地质圈闭。深层盐水层发挥着重要作用,因为其安全储存二氧化碳的能力比枯竭的油气藏大两个数量级。保持向地下注入CO2是决定任何CCS项目成功的关键部分,然而,这并不总是简单的。以往的研究表明,在含盐和高含盐含水层中注入干燥的超临界CO2,在孔隙空间中形成盐,渗透率降低,导致注入能力损失。考虑到这一挑战,必须开发基础知识和预测模型,以建立在不同热力学条件(压力和温度)、水动力条件(注入速率)和岩石非均质条件(以下称为THR)下的注入能力损失的专有技术。PINCH项目旨在建立基础科学,以开发新的预测模型,并将其应用于行业支持的真实的现场数据。PINCH汇集了来自曼彻斯特大学、达勒姆大学、普林斯顿大学、BP、Equinor、壳牌的科学家,以五个工作包(WP)实现项目目标。WP 1解决了孔隙尺度的基本问题,以描述THR条件对盐形成及其在高压高温(HPHT)条件下的聚集状态的影响。微观模型的HPHT光学可视化和基于HPHT同步辐射的微岩心驱替X射线成像将用于可视化不同条件下孔隙形态的实时变化。WP1将提供独特而有价值的四维数据集,以建立基础知识并支持WP3的数据需求。WP2在更大的物理尺度(岩心)上解决了与WP1在真实的岩石材料中类似的研究问题。BGS将为获取所需岩石材料提供便利。此外,还将测量不同THR条件下的压力注入能力和岩石力学性质。我们将解决这些因素对注入能力损失的作用方面的知识空白。这将有助于按照第三工作方案的设想建立预测模型。WP3是PINCH项目的核心,是一种新的多尺度建模方法。将开发孔隙尺度建模,以捕获多相流、相变、盐形成。将根据WP 1中的观察结果对模型进行验证。还将开发一个连续尺度模型,该模型将结合孔隙尺度模型进行参数化。该模型将根据WP 2中的实验进行验证。WP 4将提供一项高影响力的研究,WP 1和WP 2中建立的所有基础科学以及WP 3中开发的工程工具将用于解决与超临界CO2注入高盐含水层和随后的注入能力损失相关的现实实验室和现场规模的挑战。三个候选CCS油田是Endurance、Quest和Snohvit。BP、Equinor和壳牌将通过提供上述领域所需的数据和技术建议,为PINCH提供非常强大的实物捐助。为了保证PINCH项目的影响,设想了第五工作方案,其中包括产生影响、学术界和工业界之间的知识交流以及初级工作人员的培训。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vahid Niasar其他文献

Applicability of the Vertical Equilibrium model to underground hydrogen injection and withdrawal
垂直平衡模型在地下注氢和取氢中的适用性
  • DOI:
    10.1016/j.ijhydene.2025.01.201
  • 发表时间:
    2025-03-06
  • 期刊:
  • 影响因子:
    8.300
  • 作者:
    Ehsan Vahabzadeh;Ivan Buntic;Farzaneh Nazari;Bernd Flemisch;Rainer Helmig;Vahid Niasar
  • 通讯作者:
    Vahid Niasar
Impact of Two-Phase Flow Pattern on Solvent Vapour Extraction
两相流模式对溶剂蒸气萃取的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    M. Khammar;Vahid Niasar
  • 通讯作者:
    Vahid Niasar
Nonmonotonic Effects of Salinity on Wettability Alteration and Two‐Phase Flow Dynamics in PDMS Micromodels
盐度对 PDMS 微模型润湿性变化和两相流动力学的非单调影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    N. Karadimitriou;N. Karadimitriou;Hassan Mahani;H. Steeb;Vahid Niasar
  • 通讯作者:
    Vahid Niasar
Hydrogen-induced mineral alteration: A review in the context of underground hydrogen storage (UHS) in saline aquifers
  • DOI:
    10.1016/j.earscirev.2024.104975
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Heather Braid;Kevin Taylor;Edward Hough;Chris Rochelle;Vahid Niasar;Lin Ma
  • 通讯作者:
    Lin Ma
Scaling COsub2/sub convection in confined aquifers: Effects of dispersion, permeability anisotropy and geochemistry
  • DOI:
    10.1016/j.advwatres.2022.104191
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Hamidreza Erfani;Masoud Babaei;Carl Fredrik Berg;Vahid Niasar
  • 通讯作者:
    Vahid Niasar

Vahid Niasar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vahid Niasar', 18)}}的其他基金

Direct characterisation of transport and mixing in unsaturated porous media
不饱和多孔介质中传输和混合的直接表征
  • 批准号:
    EP/R021627/1
  • 财政年份:
    2018
  • 资助金额:
    $ 96.13万
  • 项目类别:
    Research Grant

相似海外基金

Global CO2 storage capacity: Modelling limitations of geography and injectivity
全球二氧化碳封存能力:地理和注入能力的建模限制
  • 批准号:
    2607847
  • 财政年份:
    2021
  • 资助金额:
    $ 96.13万
  • 项目类别:
    Studentship
Global CO2 storage capacity: Modelling limitations of geography and injectivity
全球二氧化碳封存能力:地理和注入能力的建模限制
  • 批准号:
    2448208
  • 财政年份:
    2020
  • 资助金额:
    $ 96.13万
  • 项目类别:
    Studentship
Mathematical Sciences: Analysis and the Geometry of Submanifolds/Injectivity Problems in Geometry
数学科学:几何中子流形/内射性问题的分析和几何
  • 批准号:
    9625392
  • 财政年份:
    1996
  • 资助金额:
    $ 96.13万
  • 项目类别:
    Continuing Grant
almost injectivityについての研究
近内射性研究
  • 批准号:
    01740052
  • 财政年份:
    1989
  • 资助金额:
    $ 96.13万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
Mathematical Sciences: Studies on Injectivity in Lower K-Theory
数学科学:下 K 理论中的内射性研究
  • 批准号:
    8501135
  • 财政年份:
    1985
  • 资助金额:
    $ 96.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了