Elucidating the pathways for human tooth enamel mineralisation by 4D microscopy and microfluidics
通过 4D 显微镜和微流体阐明人类牙釉质矿化的途径
基本信息
- 批准号:EP/W009412/1
- 负责人:
- 金额:$ 306.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dental enamel is the hardest mineralised tissue in the body and its complex hierarchical microstructure allows different structural adaptations against the robust challenges in the oral cavity. However, unlike other tissues, enamel lacks the ability to repair or remodel and under conditions of attack by acid produced from bacteria adhering to tooth structure, it loses its integrity and initiates the progression of dental caries, the most widespread dental disease. Despite tremendous efforts to improve oral hygiene and preventive measures by means of fluoridation, more than 2.3 billion adults suffer from caries (Global burden of Disease 2017) and account for massive expenditure as high as £3.4 billion every year (Public health England 2020, NHS England 2014). These distressing details presented in national reports emphasize the prime importance of this research topic and its significant impact on national economy, scientific community, and society in general. To tackle the problem, modern dentistry now aims to curb this dental disease by promoting enamel repair at the initial/incipient stages of caries development to prevent the need for invasive restorative procedures at later stages. In this research proposal we wish to tackle incipient enamel caries by investigating the hierarchical assembly of enamel structure at different length scales (nano- to micro- to macro-) and based on this understanding, develop and refine a new strategy for repair/remineralisation, and ultimately obtain the ability to regenerate enamel with optimal structure and improved properties directly in patients' mouths. By employing a joint interdisciplinary approach involving specialists in dental research at Birmingham and specialists in multimodal microscopy, spectroscopy and modelling at Oxford, we intend to analyse the enamel demineralisation as well as repair by combining conventional dentistry techniques such as clinical visualisation, tactile perception, radiography, laboratory computed tomography etc. with time-resolved 3D structural (hence 4D) evaluation. This will be done at the spatial resolution ranging from atomic crystal lattice to nano, micro-, and macro-scale by advanced microscopic imaging and spectroscopic techniques integrated with microfluidics.The proposers have worldwide associations with research groups across different universities, companies and practicing dentists. Industrial partnership with GlaxoSmithKline and the long established collaborative link with Diamond Light Source (UK synchrotron), ISIS Neutron and Muon source, Tescan and Oxford instruments will provide access to state-of-the-art research methodologies and ensure delivering broadest national and international impact.The project objectives cover (i) identifying and securing supply of representative samples, (ii) observing ultrastructural evolution of enamel during incipient caries demineralisation, (iii) developing and refining minimally invasive remineralisation procedures, and (iv) developing multi-scale mathematical models. This work plan encompasses all themes of EPSRC Healthcare Technologies Grand Challenges ranging from developing future therapies and frontiers of physical intervention to optimising treatment and transforming community health and care. Additionally, the development of macro- and micro-fluidic systems, remineralisation strategies, multi-modal microscopy, and mathematical modelling of enamel structure and the complete disease process shall contribute to the advancement of Cross-Cutting Research Capabilities in areas of advanced materials, novel imaging technologies, and novel computational and mathematical sciences, respectively.The greatest anticipated outcome from the success of this project will be the introduction of new minimally intrusive means of reversing or preventing enamel caries that will be of massive benefit to individuals and the economy, and the society at large.
牙釉质是身体中最坚硬的矿化组织,其复杂的分层微结构允许不同的结构适应口腔中的强大挑战。然而,与其他组织不同,釉质缺乏修复或重塑的能力,并且在由粘附于牙齿结构的细菌产生的酸的攻击条件下,它失去其完整性并引发龋齿(最普遍的牙科疾病)的进展。尽管通过氟化改善口腔卫生和预防措施做出了巨大努力,但仍有超过23亿成年人患有龋齿(2017年全球疾病负担),每年的巨额支出高达34亿英镑(英国公共卫生2020年,英国NHS 2014年)。国家报告中提出的这些令人不安的细节强调了这一研究课题的首要意义及其对国民经济、科学界和整个社会的重大影响。为了解决这个问题,现代牙科现在的目标是通过在龋齿发展的初始/初期阶段促进釉质修复来遏制这种牙科疾病,以防止在后期阶段需要侵入性修复程序。在这项研究提案中,我们希望通过研究不同长度尺度(纳米到微米到宏观)的釉质结构的分级组装来解决早期釉质龋,并基于这种理解,开发和完善修复/再矿化的新策略,并最终获得直接在患者口中再生具有最佳结构和改善性能的釉质的能力。通过采用伯明翰牙科研究专家和牛津多模态显微镜,光谱学和建模专家的联合跨学科方法,我们打算通过将传统牙科技术(如临床可视化,触觉感知,放射摄影,实验室计算机断层扫描等)与时间分辨3D结构(因此4D)评估相结合来分析釉质脱矿和修复。这将通过先进的显微成像和光谱技术与微流体技术相结合,在从原子晶格到纳米、微米和宏观尺度的空间分辨率下完成。提议者与世界各地不同大学、公司和执业牙医的研究小组有联系。与GlaxoSmithKline的工业合作伙伴关系以及与Diamond Light Source的长期合作关系(英国同步加速器)、ISIS中子和μ子源、Tescan和牛津仪器将提供最先进的研究方法,并确保产生最广泛的国家和国际影响。项目目标包括:(i)确定和确保代表性样品的供应,(ii)观察早期龋齿脱矿过程中釉质的超微结构演变,(iii)开发和改进微创脱矿程序,以及(iv)开发多尺度数学模型。该工作计划涵盖了EPSRC医疗保健技术大挑战的所有主题,从开发未来疗法和物理干预前沿到优化治疗和转变社区卫生和护理。此外,宏观和微观流体系统,微生物学策略,多模态显微镜,釉质结构和完整疾病过程的数学建模的发展将有助于先进材料,新型成像技术和新型计算和数学科学领域的跨领域研究能力的进步。该项目成功的最大预期结果将是引入新的侵入性最小的逆转或预防釉质龋的方法,这将对个人和经济以及整个社会产生巨大的益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin-Chong Tan其他文献
Triboelectric behaviour of selected zeolitic-imidazolate frameworks: exploring chemical, morphological and topological influences
所选沸石咪唑酯骨架的摩擦电行为:探索化学、形态和拓扑影响
- DOI:
10.1039/d4sc01337a - 发表时间:
2024-07-03 - 期刊:
- 影响因子:7.400
- 作者:
Ben Slater;Jin-Chong Tan - 通讯作者:
Jin-Chong Tan
A Critical Evaluation of Diffraction Strain Tomography and Contour Method by Assessing Residual Elastic Strains and Quench-Induced Cracking in a Carbon Steel Bar
- DOI:
10.1007/s12540-025-01976-x - 发表时间:
2025-07-25 - 期刊:
- 影响因子:4.000
- 作者:
Fatih Uzun;Cyril Besnard;Gavin Vaughan;Tianhuai Xu;Jin-Chong Tan;Alexander M. Korsunsky - 通讯作者:
Alexander M. Korsunsky
The role of surface deformation on responsivity of the pillared layer metal–organic framework DUT-8(Ni)
表面变形对柱状层金属有机框架 DUT-8(Ni)响应性的作用
- DOI:
10.1039/d4sc08223k - 发表时间:
2025-03-11 - 期刊:
- 影响因子:7.400
- 作者:
Leila Abylgazina;Irena Senkovska;Mariia Maliuta;Christopher Bachetzky;Marcus Rauche;Kathrin Pöschel;Johannes Schmidt;Mark Isaacs;David Morgan;Michal Otyepka;Eva Otyepkova;Matthias Mendt;Yogeshwar D. More;Robin Buschbeck;Andreas Schneemann;Alla Synytska;Andreas Pöppl;Lukas M. Eng;Jin-Chong Tan;Eike Brunner;Stefan Kaskel - 通讯作者:
Stefan Kaskel
Mechanical properties and nanostructure of monolithic zeolitic imidazolate frameworks: a nanoindentation, nanospectroscopy, and finite element study
- DOI:
10.1016/j.mtnano.2021.100166 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:
- 作者:
Michele Tricarico;Jin-Chong Tan - 通讯作者:
Jin-Chong Tan
Organic solid-state photochromism using porous scaffolds
利用多孔支架的有机固态光致变色
- DOI:
10.1038/s41578-024-00760-4 - 发表时间:
2025-02-04 - 期刊:
- 影响因子:86.200
- 作者:
Samraj Mollick;Jin-Chong Tan - 通讯作者:
Jin-Chong Tan
Jin-Chong Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin-Chong Tan', 18)}}的其他基金
Mixed-Matrix Membranes Integrating Metal-Organic Frameworks: Thermo-Mechanical Properties and Engineering Performance
集成金属有机框架的混合基质膜:热机械性能和工程性能
- 批准号:
EP/N014960/1 - 财政年份:2016
- 资助金额:
$ 306.82万 - 项目类别:
Research Grant
相似国自然基金
4-半乳糖基转移酶调控肝内胆管癌发生的机制研究
- 批准号:2024JJ5284
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
StPSR1基因调控马铃薯块茎发育的机制初探
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
水稻条斑病细菌hrp调控系统对致病性效应分子调控的分子机理
- 批准号:30370926
- 批准年份:2003
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the role of nonessential amino acid metabolism in diabetic skin wounds
阐明非必需氨基酸代谢在糖尿病皮肤伤口中的作用
- 批准号:
10607579 - 财政年份:2023
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating the contribution of amyloidogenic APP processing to AD-relevant impaired synaptic protein turnover
阐明淀粉样蛋白生成 APP 加工对 AD 相关突触蛋白周转受损的影响
- 批准号:
10538032 - 财政年份:2023
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating the functions of red blood cell factors in malaria parasite invasion
阐明红细胞因子在疟原虫入侵中的功能
- 批准号:
10736484 - 财政年份:2023
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating Olfactory Epithelial Anti-Viral Responses in Persistent Post-Viral Olfactory Dysfunction
阐明持续性病毒后嗅觉功能障碍中嗅觉上皮的抗病毒反应
- 批准号:
10351227 - 财政年份:2022
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating ACLP-dependent signaling pathways in the adipose tissue stromal-vascular niche
阐明脂肪组织基质血管生态位中 ACLP 依赖性信号通路
- 批准号:
10418018 - 财政年份:2022
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating cancer-intrinsic mechanisms of perineural invasion in pancreatic cancer
阐明胰腺癌神经周围浸润的癌症内在机制
- 批准号:
10647832 - 财政年份:2022
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating mechanisms of acetylcholine signaling in bacterial biofilms
阐明细菌生物膜中乙酰胆碱信号传导机制
- 批准号:
10703228 - 财政年份:2022
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating the Quality Control Pathways that Cope with Mutant Ribosomal RNA in Mammalian Cells
阐明应对哺乳动物细胞中突变核糖体 RNA 的质量控制途径
- 批准号:
10463494 - 财政年份:2022
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating Olfactory Epithelial Anti-Viral Responses in Persistent Post-Viral Olfactory Dysfunction
阐明持续性病毒后嗅觉功能障碍中嗅觉上皮的抗病毒反应
- 批准号:
10557195 - 财政年份:2022
- 资助金额:
$ 306.82万 - 项目类别:
Elucidating ACLP-dependent signaling pathways in the adipose tissue stromal-vascular niche
阐明脂肪组织基质血管生态位中 ACLP 依赖性信号通路
- 批准号:
10610436 - 财政年份:2022
- 资助金额:
$ 306.82万 - 项目类别: