Elucidating mechanisms of acetylcholine signaling in bacterial biofilms
阐明细菌生物膜中乙酰胆碱信号传导机制
基本信息
- 批准号:10703228
- 负责人:
- 金额:$ 4.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAntibioticsAntimicrobial ResistanceBacillus subtilisBacteriaBacterial GenesBehaviorBiological ModelsCell CommunicationCell SeparationCell membraneCellsCholine O-AcetyltransferaseChromosome MappingCommunitiesComplexCritical PathwaysDataDetectionDevelopmentDiseaseExhibitsExtracellular MatrixGene ExpressionGene Expression RegulationGenesGeneticGenomicsGoalsGram-Positive BacteriaGrowthHomeostasisHomologous GeneHumanInfectionIonsKnowledgeLaboratoriesLibrariesLocationMembrane PotentialsMetabolicMetabolic PathwayMetabolismMicrobeMicrobial BiofilmsMicrobiologyMicrofluidicsMicroscopyMorphologyNutrientOrganismOutcomePathway interactionsPhenotypePhysiologicalProductionPropertyPublic HealthResearchSignal PathwaySignal TransductionSignaling MoleculeSortingSystemTimecell growthfitnessgene discoverygene synthesisgut-brain axisimprovedin vivoinsightmodel organismmutantquorum sensingscreeningsensorsuccesstreatment strategy
项目摘要
Project Summary
While microbes are single-celled organisms, they naturally form densely packed communities known as biofilms.
Biofilms pose a major public health challenge as they often cause difficult-to-treat infections that exhibit
properties such as antimicrobial resistance and persistence even with long courses of antibiotics. Since
microbiology research has often been conducted using domesticated strains under controlled laboratory
conditions where biofilms do not form, there is a need for understanding emergent behavior that only exists in
biofilms. Integrating bacterial gene regulation and metabolism with biofilm morphology and behavior requires a
model system with sufficiently mapped genetic and metabolic pathways, established genetic tractability, and
known biofilm growth conditions. For these reasons, Bacillus subtilis is considered a model organism for biofilm
studies. Bacillus subtilis biofilms are composed of a network of resident cells and tightly regulated extracellular
matrix. Initial biofilm formation and matrix expression is controlled by the expression of master regulators that
respond to traditional quorum-sensing molecules. However, newly appreciated ion-based signaling in Bacillus
subtilis is critical for community level fitness by coordinating nutrient sharing within a biofilm. This discovery
highlights signaling pathways that are critical for the formation and overall fitness of biofilms yet remain
undiscovered. To help close this gap in knowledge, we will focus on discovering the synthesis genes for
acetylcholine and acetylcholine-based cell-to-cell signaling phenotypes. Our leading hypothesis is acetylcholine
acts as a signaling molecule in cell-to-cell communications within biofilms. Aim 1 will identify acetylcholine biofilm
signaling phenotypes using microscopy and Aim 2 will identify the genes responsible for acetylcholine synthesis.
The overarching goal of this project is to provide the first description of genetic, metabolic, and physiological
mechanisms for acetylcholine in all bacterial species. Additionally, the function of and synthesis gene(s)
responsible for acetylcholine production will provide the scientific community with the foundational knowledge to
explore bacterial homologs in other species and how signaling within bacteria may also impact complex systems
like the human gut-brain-axis in development and disease.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Lander其他文献
Stephen Lander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Lander', 18)}}的其他基金
Elucidating mechanisms of acetylcholine signaling in bacterial biofilms
阐明细菌生物膜中乙酰胆碱信号传导机制
- 批准号:
10538066 - 财政年份:2022
- 资助金额:
$ 4.35万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Studentship














{{item.name}}会员




