High Temperature Superconductors for Fusion Technologies
用于聚变技术的高温超导体
基本信息
- 批准号:EP/W011743/1
- 负责人:
- 金额:$ 253.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nuclear fusion - the joining together of atomic nuclei of light elements such as hydrogen to form larger nuclei - is the process by which vast amounts of energy is produced in stars like our sun. If it can be harnessed on Earth it has the potential deliver a nearly unlimited and safe source of energy which does not produce the environmentally damaging CO2 emissions that are released by burning traditional fossil fuels. However, for nuclear fusion to occur, extremely high temperatures and pressures are required because positively charged atomic nuclei within a plasma have to collide with each other with sufficient energy to overcome the immensely strong electrostatic repulsion forces. To achieve nuclear fusion in a machine on Earth, extraordinarily high temperatures of around 150 million degrees Celsius are needed, about 10 times higher than the temperature of the sun's core. This precludes the use of traditional materials to confine the plasma, and in the most common type of fusion reactor called a tokamak, strong magnetic fields are used instead. Since the power density of a particular geometry of tokamak scales with the strength of the magnetic field to the power of four, there is a huge benefit to using higher field magnets for plasma confinement.High temperature superconductors - materials that can conduct electricity without any resistance - are an enabling technology for a new generation of compact nuclear fusion reactors that are widely believed will open the door to commercialisation of fusion for energy generation. This is because state-of-the-art high temperature superconducting tapes can carry extremely high electrical currents, even when subjected to enormous magnetic fields that completely destroy superconductivity in the best low temperature superconductors. However, although high temperature superconducting materials with fantastic properties are now available in lengths up to about 1 km in the form of flexible tapes known as coated conductors, the materials are incredibly complex and sensitive to damage, making their practical deployment in magnets for fusion devices a major challenge. This programme of research involves using a unique combination of advanced materials characterisation and modelling techniques to determine how high temperature superconductors will degrade in the harsh environment of a fusion reactor where they will be continually bombarded by high energy neutrons. The focus will be on understanding the underlying damage and recovery mechanisms in these complex functional ceramics under the most realistic conditions possible. Since in operation the superconductors will be irradiated by neutrons whilst in their superconducting state at cryogenic temperatures, innovative in situ experiments will be performed to understand the differences between room temperature and low temperature radiation damage. The experimental programme will be supported by first principles modelling of pristine and defect structures in the superconducting compounds, and the outcomes will be used to validate larger scale simulations of radiation damage as well as providing key data on degradation to feed into materials selection and magnet design decisions for the next generation of fusion magnets. The advanced characterisation methodologies developed in this fellowship will also be applied to understanding radiation damage in a wider range of fusion relevant materials.
核聚变--氢等轻元素的原子核结合在一起形成更大的原子核--是像我们的太阳这样的恒星产生大量能量的过程。如果它可以在地球上利用,它有可能提供一种几乎无限和安全的能源,而不会产生燃烧传统化石燃料所释放的对环境有害的二氧化碳排放。然而,要发生核聚变,需要极高的温度和压力,因为等离子体中带正电的原子核必须以足够的能量相互碰撞,以克服极强的静电排斥力。为了在地球上的机器中实现核聚变,需要大约1.5亿摄氏度的极高温度,大约是太阳核心温度的10倍。这就排除了使用传统材料来限制等离子体,而在最常见的聚变反应堆类型中,称为托卡马克,强磁场被用来代替。由于托卡马克的特定几何形状的功率密度与磁场强度的四次方成比例,在等离子体约束中使用更高磁场的磁体有巨大的好处。高温超导体--可以无电阻导电的材料--是新一代紧凑型核聚变反应堆的一项使能技术,人们普遍认为这将打开商业化的大门。核聚变产生能量。这是因为最先进的高温超导带材可以携带极高的电流,即使在受到完全破坏最好的低温超导体的超导性的巨大磁场时也是如此。然而,尽管具有奇妙特性的高温超导材料现在可以以称为涂层导体的柔性带的形式提供长达约1公里的长度,但这些材料非常复杂且对损坏非常敏感,这使得它们在聚变装置磁体中的实际部署成为一个重大挑战。该研究计划涉及使用先进材料表征和建模技术的独特组合,以确定高温超导体如何在聚变反应堆的恶劣环境中降解,在那里它们将不断受到高能中子的轰击。重点将是了解潜在的损害和恢复机制,在这些复杂的功能陶瓷在最现实的条件下可能。由于在操作中,超导体将在低温下处于超导状态时受到中子照射,因此将进行创新的原位实验,以了解室温和低温辐射损伤之间的差异。该实验计划将得到超导化合物中原始和缺陷结构的第一原理建模的支持,其结果将用于验证辐射损伤的更大规模模拟,并提供有关退化的关键数据,以供下一代聚变磁体的材料选择和磁体设计决策。在该研究金中开发的先进表征方法也将应用于了解更广泛的聚变相关材料中的辐射损伤。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing neutron and helium ion irradiation damage of REBa 2 Cu 3 O 7-d coated conductor using x-ray absorption spectroscopy
使用 X 射线吸收光谱比较 REBa 2 Cu 3 O 7-d 涂层导体的中子和氦离子辐照损伤
- DOI:10.1088/1361-6668/aced9e
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Adams K
- 通讯作者:Adams K
Understanding irradiation damage in high-temperature superconductors for fusion reactors using high resolution X-ray absorption spectroscopy
使用高分辨率 X 射线吸收光谱了解聚变反应堆高温超导体的辐照损伤
- DOI:10.1038/s43246-022-00272-0
- 发表时间:2022
- 期刊:
- 影响因子:7.8
- 作者:Nicholls R
- 通讯作者:Nicholls R
The effect of in situ irradiation on the superconducting performance of REBa2Cu3O7-d-coated conductors
原位辐照对REBa2Cu3O7-d涂层导体超导性能的影响
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:Iliffe W
- 通讯作者:Iliffe W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susannah Speller其他文献
The effect of in situ irradiation on the superconducting performance of REBa2Cu3O7−δ-coated conductors
- DOI:
10.1557/s43577-022-00473-5 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:4.900
- 作者:
Will Iliffe;Kirk Adams;Nianhua Peng;Greg Brittles;Rod Bateman;Aidan Reilly;Chris Grovenor;Susannah Speller - 通讯作者:
Susannah Speller
希土類金属における有効オンサイトクーロン相互作用の第一原理的導出と電子構造
稀土金属有效现场库仑相互作用和电子结构的第一性原理推导
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Arsham Ghasemi;Demie Kepaptsoglou;Kenji Nawa;Susannah Speller;Pedro Galindo;Quentin Ramasse;Kohji Nakamura;Thorsten Hesjedal;Vlado Lazarov;名和憲嗣,秋山亨,伊藤智徳,中村浩次 - 通讯作者:
名和憲嗣,秋山亨,伊藤智徳,中村浩次
希土類金属における有効オンサイトクーロン相互作用の第一原理計算
稀土金属有效现场库仑相互作用的第一性原理计算
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Arsham Ghasemi;Demie Kepaptsoglou;Kenji Nawa;Susannah Speller;Pedro Galindo;Quentin Ramasse;Kohji Nakamura;Thorsten Hesjedal;Vlado Lazarov;名和憲嗣,秋山亨,伊藤智徳,中村浩次;名和憲嗣,秋山亨,伊藤智徳,中村浩次 - 通讯作者:
名和憲嗣,秋山亨,伊藤智徳,中村浩次
Van der Waals interfaces: TI/superconductor and semiconductor
范德华接口:TI/超导和半导体
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Arsham Ghasemi;Demie Kepaptsoglou;Kenji Nawa;Susannah Speller;Pedro Galindo;Quentin Ramasse;Kohji Nakamura;Thorsten Hesjedal;Vlado Lazarov - 通讯作者:
Vlado Lazarov
X-Ray Computed Tomography Study of the Microstructure of Superconducting MgB2 Bulks
- DOI:
10.1007/s10948-025-06933-8 - 发表时间:
2025-02-18 - 期刊:
- 影响因子:1.700
- 作者:
Yingqing Wang;Chris Grovenor;Susannah Speller;Barbara Shollock;Tayebeh Mousavi - 通讯作者:
Tayebeh Mousavi
Susannah Speller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susannah Speller', 18)}}的其他基金
Large Bulk (RE)BCO superconducting magnets for desktop NMR/MRI
用于桌面 NMR/MRI 的大块 (RE)BCO 超导磁体
- 批准号:
EP/T01539X/1 - 财政年份:2020
- 资助金额:
$ 253.41万 - 项目类别:
Research Grant
A bulk MgB2 magnet demonstrator for biomedical applications
用于生物医学应用的块状 MgB2 磁体演示器
- 批准号:
EP/P026427/1 - 财政年份:2017
- 资助金额:
$ 253.41万 - 项目类别:
Research Grant
相似海外基金
The role of phonons in high-entropy alloy superconductors
声子在高熵合金超导体中的作用
- 批准号:
23K04570 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the pair-density functional theory for superconductors
超导体对密度泛函理论的发展
- 批准号:
23K03250 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-Entropy Alloy Superconductors under High Pressures
高压下的高熵合金超导体
- 批准号:
2310526 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Vortex-beam Spectroscopy of Type-II Superconductors in the THz Regime
博士后奖学金:MPS-Ascend:太赫兹体系中 II 型超导体的涡旋光束光谱
- 批准号:
2316535 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Fellowship Award
Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
- 批准号:
2320073 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Continuing Grant
Stress-strain measurements on high-temperature superconductors
高温超导体的应力应变测量
- 批准号:
2883958 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Studentship
Elasto-superconductivity: a pathway to devising new unconventional superconductors
弹性超导:设计新型非常规超导体的途径
- 批准号:
EP/X01245X/1 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Research Grant
Nanoscale characterization of high-pressure superconductors using diamond quantum sensing
使用金刚石量子传感对高压超导体进行纳米级表征
- 批准号:
23H01835 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Intrinsic Pinning in Magnetic Iron-Based Superconductors; a Route to High Critical Current Conductors at High Magnetic Fields
磁性铁基超导体的本征钉扎;
- 批准号:
EP/X015033/1 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Research Grant
Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
- 批准号:
2320074 - 财政年份:2023
- 资助金额:
$ 253.41万 - 项目类别:
Continuing Grant