Intrinsic Pinning in Magnetic Iron-Based Superconductors; a Route to High Critical Current Conductors at High Magnetic Fields
磁性铁基超导体的本征钉扎;
基本信息
- 批准号:EP/X015033/1
- 负责人:
- 金额:$ 58.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The discovery of superconductivity by Kamerlingh Onnes in 1911 was one of the most remarkable discoveries of the 20th century. A superconductor is a material that can carry large electrical currents without any resistance, that is without losing any energy. Although superconductors offered clear benefits for the transmission of electrical power, many problems needed to be solved before they could find mainstream applications. The first discovered superconductors had to be cooled to extremely low temperatures, close to absolute zero on the Kelvin scale, requiring the development of suitable cryogenic cooling systems which themselves had significant energy losses. Since the discovery of copper oxide-based superconductors in 1986 and iron-based superconductors in 2006 with much higher operation temperatures, this problem has been largely solved. However, we now know that only certain types of superconducting materials, so-called 'type II' ones, are capable of operation at the very high magnetic fields needed for medical magnetic resonance imaging or magnetic confinement in fusion reactors. However, these 'type II' materials are only able to achieve this by allowing tiny tubes of magnetic field called vortices to enter them which start to generate heat (and lose energy) if they are driven into motion by large flowing supercurrents. Fortunately nature has found a solution to this problem, and vortices can become trapped at defects present in the material preventing them from moving and losing energy. Developing high current superconducting wires therefore requires introducing as many defects into the material as possible without significantly degrading other useful superconducting properties. Even then the current carrying capacity of superconductors at very high magnetic fields (when they become flooded with many vortices) can still be too low for intended applications. In this project we will investigate new types of iron-based superconductors that have recently been discovered in which magnetism and superconductivity coexist. This behaviour is very unusual as magnetism and superconductivity are normally antagonistic phenomena; they involve opposite arrangements of the quantum spins of electrons. Each electron can be visualised as having a tiny compass 'needle' (the spin) attached to it; in ferromagnets all the 'needles' point in the same direction, while in conventional superconductors the electrons form pairs in which the 'needles' point in opposite directions. Remarkably, in these new iron-based materials the presence of ferromagnetism does not destroy superconductivity, and a patchwork of regions called domains where the magnetic 'needles' point in different directions coexists with the superconducting state. These magnetic domains and the boundaries between them represent a new type of defect that can strongly trap vortices, leading to enhanced current carrying capacities, even in very high magnetic fields.In this project we will bring together a team of experts with a diverse range of skills that can grow, pattern, measure and undertake theoretical studies on magnetic iron-based superconductors. We will carefully investigate how the patchwork of magnetic domains present can trap superconducting vortices and control their dynamic properties and will develop advanced theoretical models to understand our results. Once the conditions have been established for achieving the highest current densities at high magnetic fields we will apply them to iron-based superconducting thin films grown by our partner in Karlsruhe (Germany) with the ultimate goal of realising high performance commercial wires that can be produced by very low-cost methods. Although the main motivation for this project is to develop new materials that meet the requirements for key applications, we will also generate a lot of new scientific knowledge that will be of great value to the wider research community working on superconducting materials.
卡默林格·昂内斯在1911年发现了超导电性,这是20世纪最引人注目的发现之一。超导体是一种可以在没有任何电阻的情况下携带大电流的材料,也就是说不会损失任何能量。虽然超导体对电能的传输有明显的好处,但在找到主流应用之前,还需要解决许多问题。第一批被发现的超导体必须冷却到极低的温度,接近开尔文标准的绝对零度,这需要开发合适的低温冷却系统,而这种冷却系统本身就有很大的能量损失。自从1986年发现了铜氧化物超导体和2006年发现了工作温度更高的铁基超导体以来,这一问题在很大程度上得到了解决。然而,我们现在知道,只有某些类型的超导材料,即所谓的第二类超导材料,能够在医用磁共振成像或聚变反应堆磁约束所需的非常高的磁场下工作。然而,这些第二类材料只能通过允许被称为涡旋的微小磁场管进入它们才能实现这一点,如果它们被大的流动的超流驱动进入运动,就会开始产生热量(并失去能量)。幸运的是,大自然已经找到了解决这个问题的办法,漩涡可以被困在材料中存在的缺陷上,阻止它们移动和损失能量。因此,发展大电流超导导线需要在不显著降低其他有用的超导性能的情况下,在材料中引入尽可能多的缺陷。即便如此,超导体在非常高的磁场下(当它们被许多涡流淹没时)的载流能力对于预期的应用来说仍然可能太低。在这个项目中,我们将研究最近发现的磁性和超导共存的新型铁基超导体。这种行为非常不寻常,因为磁性和超导电性通常是对立的现象;它们涉及电子量子自旋的相反排列。每个电子都可以被想象成有一个微小的指南针(自旋)连接在它上面;在铁磁体中,所有的“针”指向同一方向,而在传统超导体中,电子形成对,其中的“针”指向相反的方向。值得注意的是,在这些新的铁基材料中,铁磁性的存在并不会破坏超导电性,并且在不同方向的磁针指向的区域拼凑在一起的区域与超导状态共存。这些磁区和它们之间的边界代表了一种新型的缺陷,它可以强烈地捕获涡旋,导致电流载流能力增强,即使在非常高的磁场中也是如此。在这个项目中,我们将汇集一组具有不同技能的专家团队,他们可以生长、设计、测量和进行磁性铁基超导体的理论研究。我们将仔细研究当前拼接的磁场如何捕获超导涡旋并控制其动力学性质,并将开发先进的理论模型来理解我们的结果。一旦在高磁场下获得最高电流密度的条件已经建立,我们将把它们应用于我们在德国卡尔斯鲁厄的合作伙伴生长的铁基超导薄膜,最终目标是实现可以用非常低的成本方法生产的高性能商业线材。虽然这个项目的主要动机是开发符合关键应用要求的新材料,但我们也将产生许多新的科学知识,这些知识将对从事超导材料工作的更广泛的研究界具有重要价值。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Bending其他文献
Abstract Book; Mesoscopic Superconductivity & Vortex Imaging
摘要书;
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Simon Bending - 通讯作者:
Simon Bending
Presentations; Mesoscopic Superconductivity & Vortex Imaging
演示;
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Simon Bending - 通讯作者:
Simon Bending
Angular dependence of domain wall resistivity in artificial magnetic domain structures.
人工磁畴结构中畴壁电阻率的角度依赖性。
- DOI:
10.1103/physrevlett.97.206602 - 发表时间:
2006 - 期刊:
- 影响因子:8.6
- 作者:
A. Aziz;Simon Bending;H. G. Roberts;S. Crampin;Peter J Heard;C. Marrows - 通讯作者:
C. Marrows
Investigation of temperature dependent magnetic properties in irradiated Co/Pt multilayer devices using Extraordinary Hall effect measurements
使用非凡霍尔效应测量研究辐照 Co/Pt 多层器件中与温度相关的磁特性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Wang;Y. Qiu;Y. Huang;P. J. Heard;Simon Bending - 通讯作者:
Simon Bending
Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate–TiO<sub>2</sub> film
- DOI:
10.1016/j.jelechem.2011.04.010 - 发表时间:
2011-07-01 - 期刊:
- 影响因子:
- 作者:
Charles Y. Cummings;Jay D. Wadhawan;Takuya Nakabayashi;Masa-aki Haga;Liza Rassaei;Sara E.C. Dale;Simon Bending;Martin Pumera;Stephen C. Parker;Frank Marken - 通讯作者:
Frank Marken
Simon Bending的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Bending', 18)}}的其他基金
Magnetic Metasurfaces for Sustainable Information and Communication Technologies (MetaMagIC)
用于可持续信息和通信技术的磁性超表面 (MetaMagIC)
- 批准号:
EP/W022680/1 - 财政年份:2022
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Graphene nanosensors for scanning Hall microscopy and susceptometry
用于扫描霍尔显微镜和电纳测定法的石墨烯纳米传感器
- 批准号:
EP/R007160/1 - 财政年份:2018
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Free Access to Nanolithography & Supporting Processes, University of Bath
免费使用纳米光刻技术
- 批准号:
EP/K040324/1 - 财政年份:2013
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
- 批准号:
EP/J010626/1 - 财政年份:2012
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Celebration of 100 Years of Superconductivity; Support for an International Workshop in Bath
庆祝超导 100 周年;
- 批准号:
EP/I011323/1 - 财政年份:2011
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Current-driven Domain Wall Motion in Artificial Magnetic Domain Structures
人工磁畴结构中电流驱动的畴壁运动
- 批准号:
EP/G011230/1 - 财政年份:2009
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Designer 3D Magnetic Mesostructures
设计师 3D 磁性细观结构
- 批准号:
EP/E039944/1 - 财政年份:2007
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
A Scanning Hall Probe Microscope for High Resolution milliKelvin Magnetic Imaging
用于高分辨率毫开尔文磁成像的扫描霍尔探针显微镜
- 批准号:
EP/D034264/1 - 财政年份:2006
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
相似国自然基金
pinning下二维胶体体系熔化的结构及动力学的实验研究
- 批准号:11704270
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
层合复合材料z-pinning技术的增韧机理及其应用研究
- 批准号:10502010
- 批准年份:2005
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
WoU-MMA: Pinning the Generation of Ultra-High-Energy Cosmic Rays with First Principles Plasma Simulations
WoU-MMA:利用第一原理等离子体模拟来固定超高能宇宙射线的产生
- 批准号:
2308944 - 财政年份:2023
- 资助金额:
$ 58.16万 - 项目类别:
Standard Grant
Pin down the mechanism of Fermi-level pinning in metal/2D-semiconductor contacts
确定金属/二维半导体接触中费米能级钉扎的机制
- 批准号:
2004445 - 财政年份:2020
- 资助金额:
$ 58.16万 - 项目类别:
Continuing Grant
Finding a needle in a genomic haystack: A tool for pinning down genetic edits
基因组大海捞针:确定基因编辑的工具
- 批准号:
548817-2020 - 财政年份:2020
- 资助金额:
$ 58.16万 - 项目类别:
Idea to Innovation
Improvement of critical current properties of iron-based superconductors by controlling artificial pinning centers and defect structure
通过控制人工钉扎中心和缺陷结构改善铁基超导体的临界电流性能
- 批准号:
19K15034 - 财政年份:2019
- 资助金额:
$ 58.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Post-Artificial-Pinning Technology for High Performance Superconducting Tape
高性能超导带的后人工钉扎技术
- 批准号:
18H01478 - 财政年份:2018
- 资助金额:
$ 58.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Microscopic Young's equation on heterogeneous solid surfaces with pinning sites
具有钉扎位点的异质固体表面的微观杨氏方程
- 批准号:
18K03978 - 财政年份:2018
- 资助金额:
$ 58.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the magnetic flux trapping and high-quality superconducting films by controlling artificial pinning centers using molecular doping
利用分子掺杂控制人工钉扎中心的磁通量捕获和高质量超导薄膜的研究
- 批准号:
17K06346 - 财政年份:2017
- 资助金额:
$ 58.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pinning down the assembly of most massive galaxies with the M3G Survey
通过 M3G 巡天确定最大质量星系的聚集
- 批准号:
387227740 - 财政年份:2017
- 资助金额:
$ 58.16万 - 项目类别:
Research Grants
Exploring optimal artifical pinning centers for high=Tc superconductors with hish strain tolerance
探索具有高应变耐受性的高 Tc 超导体的最佳人工钉扎中心
- 批准号:
16H04512 - 财政年份:2016
- 资助金额:
$ 58.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nucleation of an Ideal Glass by Bulk Random Pinning
通过散装随机钉扎形成理想玻璃的成核
- 批准号:
16H06886 - 财政年份:2016
- 资助金额:
$ 58.16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up