Responsible AI for Long-term Trustworthy Autonomous Systems (RAILS): Integrating Responsible AI and Socio-legal Governance

用于长期可信自治系统(RAILS)的负责任的人工智能:将负责任的人工智能与社会法律治理相结合

基本信息

  • 批准号:
    EP/W011344/1
  • 负责人:
  • 金额:
    $ 90.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Society is seeing enormous growth in the development and implementation of autonomous systems, which can offer significant benefits to citizens, communities, and businesses. The potential for improvements in societal wellbeing is substantial. However, this positive potential is balanced by a similar potential for societal harm through contingent effects such as the environmental footprint of autonomous systems, systemic disadvantage for some socio-economic groups, and entrenchment of digital divides. The rollout of autonomous systems must therefore be addressed with responsibilities to society in mind. This must include engaging in dialogue with society and with those affected, trying to anticipate challenges before they occur, and responding to them. One such anticipated challenge is the effect of change on autonomous systems. Autonomous systems are not designed to be deployed in conditions of perfect stasis, as they are unlikely to encounter such conditions in real-world environments. They are frequently designed for changing environments, like public roads, and may also be designed to change themselves over time, for instance by means of learning capabilities. Not only that, but these changes in deployed systems and in their operating conditions are also likely to take place against a shifting contextual background of societal alteration (e.g. other technologies, 'black swan' events, or simply the day-to-day operation of communities). The effects of such change, on the systems themselves, on the environments within which they are operating, and on the humans with which they engage, must be considered as part of a responsible innovation approach. The RAILS project brings together a team from UCL and the Universities of York, Leeds and Oxford, from multiple disciplines, with the aim of engaging with the challenges associated with the long-term operation of autonomous systems and the effects of change on these systems. In particular, we will explore how the notion of responsibility is affected by (i) open-ended dynamic environments - situations that change over time, and(ii) lifelong-learning systems - i.e. systems that are designed to adapt themselves to their circumstances and 'learn' over time. The RAILS project will focus on such independent long-term autonomous systems in different applications. These will include (i) autonomous vehicles and (ii) autonomous robot systems such as unmanned aerial vehicles (drones). RAILS will look at social and legal contexts, as well as technical requirements, in order to assess whether and how these systems can be designed, developed, and operated in a way that they are responsible, accountable, and trustworthy. The overall aim of the RAILS project is to bring together responsible development principles with governance mechanisms and technical understanding to create new understandings of how autonomous systems can adapt to change, how they can be deployed in a responsible and trustworthy way, and how such deployment can be framed by governance to ensure accountability and flexibility.
社会正在看到自治系统的开发和实施的巨大增长,这可以为公民,社区和企业带来重大利益。改善社会福祉的潜力巨大。然而,这种积极的潜力被类似的潜在社会危害所抵消,这些潜在社会危害是通过诸如自治系统的环境足迹、某些社会经济群体的系统性劣势以及数字鸿沟的加深等偶然影响造成的。因此,在推出自主系统时必须考虑到对社会的责任。这必须包括与社会和受影响者进行对话,努力在挑战发生之前预测挑战,并应对挑战。其中一个预期的挑战是变化对自治系统的影响。自主系统的设计并不是为了在完美停滞的条件下部署,因为它们不太可能在现实世界的环境中遇到这样的条件。它们通常是为不断变化的环境而设计的,如公共道路,也可能是为了随着时间的推移而改变自己,例如通过学习能力。不仅如此,部署的系统及其运行条件的这些变化也可能发生在社会变革的不断变化的背景下(例如,其他技术,“黑天鹅”事件,或者只是社区的日常运作)。这种变化对系统本身、系统运行的环境以及系统所涉及的人的影响,必须作为负责任的创新方法的一部分加以考虑。RAILS项目汇集了来自伦敦大学学院、约克大学、利兹大学和牛津大学的多个学科的团队,旨在应对与自主系统长期运行相关的挑战以及变化对这些系统的影响。特别是,我们将探讨责任的概念是如何受到(i)开放式动态环境-随着时间的推移而变化的情况,以及(ii)终身学习系统-即旨在适应其环境并随着时间的推移而“学习”的系统。RAILS项目将专注于不同应用中的独立长期自主系统。这些将包括(i)自动驾驶车辆和(ii)自动机器人系统,如无人驾驶飞行器(无人机)。RAILS将研究社会和法律的背景以及技术要求,以评估这些系统是否以及如何以负责任、负责任和值得信赖的方式设计、开发和运行。RAILS项目的总体目标是将负责任的开发原则与治理机制和技术理解结合在一起,以创建对自治系统如何适应变化的新理解,如何以负责任和值得信赖的方式部署它们,以及如何通过治理来构建这种部署以确保问责制和灵活性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulation-Based Counterfactual Causal Discovery on Real World Driver Behaviour
基于模拟的现实世界驾驶员行为的反事实因果发现
  • DOI:
    10.1109/iv55152.2023.10186705
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Howard R
  • 通讯作者:
    Howard R
Evaluating Temporal Observation-Based Causal Discovery Techniques Applied to Road Driver Behaviour
  • DOI:
    10.48550/arxiv.2302.00064
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rhys Howard;L. Kunze
  • 通讯作者:
    Rhys Howard;L. Kunze
Explainable Action Prediction through Self-Supervision on Scene Graphs
CC-SGG: Corner Case Scenario Generation using Learned Scene Graphs
  • DOI:
    10.48550/arxiv.2309.09844
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    George Drayson;Efimia Panagiotaki;Daniel Omeiza;Lars Kunze
  • 通讯作者:
    George Drayson;Efimia Panagiotaki;Daniel Omeiza;Lars Kunze
The SAGE Handbook of Digital Society
数字社会 SAGE 手册
  • DOI:
    10.4135/9781529783193
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Housley W
  • 通讯作者:
    Housley W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lars Kunze其他文献

Indirect Object Search based on Qualitative Spatial Relations
基于定性空间关系的间接对象搜索
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lars Kunze;Nick Hawes
  • 通讯作者:
    Nick Hawes
Transitioning Towards a Proactive Practice: A Longitudinal Field Study on the Implementation of a ML System in Adult Social Care
转向主动实践:成人社会护理中机器学习系统实施的纵向实地研究
Ethical Risk Assessment for Social Robots: Case Studies in Smart Robot Toys
社交机器人的道德风险评估:智能机器人玩具案例研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alan F. T. Winfield;A. V. Maris;Katie Winkle;Marina Jirotka;P. Salvini;Helena Webb;Arianna Schuler Scott;J. L. Freeman;Lars Kunze;P. Slovak;Nikki Theofanopoulou
  • 通讯作者:
    Nikki Theofanopoulou
Build Back Better with Responsible AI
  • DOI:
    10.1007/s13218-021-00707-9
  • 发表时间:
    2021-03-26
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Lars Kunze
  • 通讯作者:
    Lars Kunze
Can We Stop the Academic AI Brain Drain?
  • DOI:
    10.1007/s13218-019-00577-2
  • 发表时间:
    2019-03-13
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Lars Kunze
  • 通讯作者:
    Lars Kunze

Lars Kunze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
  • 批准号:
    JCZRLH202500512
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
应用于AI芯片的先进封装TSV关键技术研发
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 90.48万
  • 项目类别:
    Standard Grant
SLES: A Theoretical Lens on Generative AI Safety: Near and Long Term
SLES:生成式人工智能安全的理论视角:近期和长期
  • 批准号:
    2331831
  • 财政年份:
    2023
  • 资助金额:
    $ 90.48万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312866
  • 财政年份:
    2023
  • 资助金额:
    $ 90.48万
  • 项目类别:
    Standard Grant
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
  • 批准号:
    10545691
  • 财政年份:
    2022
  • 资助金额:
    $ 90.48万
  • 项目类别:
Pleistocene Antarctic Polar Front reconstruction based on AI-based classification of foraminifera: Verification of long-term cooling mechanism
基于AI有孔虫分类的更新世南极极锋重建:长期变冷机制的验证
  • 批准号:
    22K14132
  • 财政年份:
    2022
  • 资助金额:
    $ 90.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improving Long COVID patient recovery through voice-based AI symptom tracking and personalised rehabilitation
通过基于语音的人工智能症状跟踪和个性化康复改善长期新冠肺炎患者的康复
  • 批准号:
    10032047
  • 财政年份:
    2022
  • 资助金额:
    $ 90.48万
  • 项目类别:
    Collaborative R&D
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
  • 批准号:
    10742360
  • 财政年份:
    2022
  • 资助金额:
    $ 90.48万
  • 项目类别:
Improved self-management of health, wellbeing and long term conditions through advanced AI temperature monitoring
通过先进的人工智能温度监测改善健康、福祉和长期状况的自我管理
  • 批准号:
    10044847
  • 财政年份:
    2022
  • 资助金额:
    $ 90.48万
  • 项目类别:
    Grant for R&D
Study of long-term clinical economic impact of adherence: AI and big data predictive model development
依从性的长期临床经济影响研究:人工智能和大数据预测模型开发
  • 批准号:
    22H03307
  • 财政年份:
    2022
  • 资助金额:
    $ 90.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing MiHealth - an AI-driven self-care tool for the management of long-term conditions
开发 MiHealth - 一种人工智能驱动的自我护理工具,用于管理长期状况
  • 批准号:
    10043456
  • 财政年份:
    2022
  • 资助金额:
    $ 90.48万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了